

Formation Capital Corporation, U.S. 812 Shoup Street Salmon, ID 83467

Tel: 208.756.4578 Fax: 208.756.2573



June 14, 2013

US EPA Region 10 Attn: PCS Data Entry Team 1200 Sixth Avenue Suite 900, OCE-133 Seattle, WA 98101

Subject:

2012 Fish Tissue & Macro Invertebrate Monitoring Results

Formation Capital Corporation, U.S. (Formation), submits the attached 2012 Fish Tissue & Macro Invertebrate Monitoring Results for the Idaho Cobalt Project (ICP) pursuant to the NPDES Permit. A hard copy of this submittal is provided for your and those courtesy copied on this transmittal.

If you have any questions about this submittal please contact me by telephone at 208-756-4578 ext. 26 or by email at wgscales@formcap.com.

Respectfully,

Wm. G. (Bill) Scales

**President** 

Attachment

CC:

IDEQ Attn: Water Division NMFS Attn: Director

U.S. Fish and Wildlife

I (IS)

# **IDAHO COBALT PROJECT**

# FISH TISSUE & MACROINVERTEBRATE MONITORING RESULTS

In accordance with
United States Environmental Protection Agency
National Pollutant Discharge Elimination System
Permit No. ID-002832-1

Prepared for:

Formation Capital Corporation, U.S. 812 Shoup Street Salmon, Idaho 83467

Prepared by:

Hildebrand

Hildebrand & Associates, LLC 4623 E. Pegasus Ct Boise, Idaho 83716

> December 11, 2012 (Revised January 3, 2013)

|                            | CONTENTS                                                                                                                                                            |      |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <u>Secti</u>               | <u>on</u>                                                                                                                                                           | Page |
| 1.0                        | INTRODUCTION                                                                                                                                                        | 2    |
| 2.0                        | SAMPLING APPROACH                                                                                                                                                   |      |
|                            | 2.1 SITE SELECTION AND LOCATIONS                                                                                                                                    | 2_1  |
| 3.0                        | SAMPLING METHODS                                                                                                                                                    |      |
|                            | 3.1 IN SITU WATER QUALITY                                                                                                                                           | 2-2  |
|                            | 3.2 MACROINVERTEBRATE SAMPLING                                                                                                                                      | 2-2  |
|                            | 3.3 MACROINVERTEBRATE HANDLING AND ANALYSIS                                                                                                                         | 2-3  |
|                            | 3.4 BIOTIC INDICES                                                                                                                                                  |      |
|                            | 3.5 HABITAT ASSESSMENT                                                                                                                                              |      |
|                            | 3.6 SUBSTRATE CHARACTERIZATION                                                                                                                                      | 2-5  |
|                            | 3.7 FISH TISSUE COLLECTION                                                                                                                                          | 2-5  |
|                            | 3.8 FISH TISSUE HANDLING AND ANALYSIS                                                                                                                               | 2-6  |
|                            | 3.9 CHAIN OF CUSTODY                                                                                                                                                | 2-11 |
|                            | 3.9.1 QUALITY CONTROL AND QUALITY ASSURANCE                                                                                                                         |      |
| 4.0                        | RESULTS AND DISCUSSION                                                                                                                                              | 2-12 |
|                            | 4.1 IN SITU WATER QUALITY                                                                                                                                           | 2-12 |
|                            | 4.2 MACROINVERTEBRATE SAMPLE.RESULTS                                                                                                                                |      |
|                            | 4.3 HABITAT ASSESSMENT                                                                                                                                              |      |
|                            | 4.4 STTREAM DISCHARGE                                                                                                                                               | 2-16 |
|                            | 4.5 SUBSTRATE CHARACTERIZATION                                                                                                                                      | 2-17 |
|                            | 4.6 FISH TISSUE                                                                                                                                                     |      |
|                            | 4.7 CONCLUSION                                                                                                                                                      |      |
| 5.0                        | REFERENCES                                                                                                                                                          | 2-20 |
|                            |                                                                                                                                                                     |      |
|                            | APPENDICES                                                                                                                                                          |      |
| A<br>B<br>C<br>D<br>E<br>F | YSI CALIBRATION SCIENTIFIC COLLECTING PERMIT AND REPORTING DOCUMEN' FISH COLLECTION FORMS CHAIN OF CUSTODY FORMS MACROINVERTEBRATE RESULTS WOLMAN PEBBLE COUNT FORM | TS   |
| G                          | FISH TISSUE METALS                                                                                                                                                  |      |

## **FIGURES**

| FIGURE 1 | MACROINVERTEBRATE SAMPLING LOCATIONS                  |
|----------|-------------------------------------------------------|
| FIGURE 2 | FISH TISSUE SAMPLING LOCATIONS - BIG DEER CREEK       |
| FIGURE 3 | FISH TISSUE SAMPLING LOATIONS - UPPER BLACKBIRD CREEK |

#### **TABLES**

| TABLE 1  | IN SITU WATER QUALITY MEASUREMENTS                       |         |
|----------|----------------------------------------------------------|---------|
| TABLE 2  | PHYSICAL HABITAT DATA                                    |         |
| TABLE 3  | STREAM DISCHARGE MEASUREMENTS                            |         |
| TABLE 4  | BIG DEER CREEK 01 FISH TISSUE METALS ANALYSIS (DRY WEIGH | HT)     |
| TABLE 5  | BIG DEER CREEK 01 FISH TISSUE METALS ANALYSIS (WET WEIG  | HT)     |
| TABLE 6  | BIG DEER CREEK 02 FISH TISSUE METALS ANALYSIS (DRY WEIG  | HT)     |
| TABLE 7  | BIG DEER CREEK 02 FISH TISSUE METALS ANALYSIS (WET WEIG  | HT)     |
| TABLE 8  | UPPER BLACKBIRD CREEK FISH TISSUE METALS ANALYSIS (DRY   | WEIGHT) |
| TABLE 9  | UPPER BLACKBIRD CREEK FISH TISSUE METALS ANALYSIS (WET   | WEIGHT) |
| TABLE 10 | METHOD BLANKS DRY WEIGHT BASIS                           | 3       |
| TABLE II | METHOD BLANKS WET WEIGHT BASIS                           |         |
| TABLE 12 | MERCURY METHOD BLANKS DRY WEIGHT BASIS                   | 19      |
| TABLE 13 | MERCURY METHOD BLANKS WET WEIGHT BASIS                   |         |
|          |                                                          |         |

#### 1.0 INTRODUCTION

Formation Capital Corporation, U.S. (Formation) retained Hildebrand & Associates, LLC (Hildebrand) to collect aquatic benthic macroinvertebrates (Macroinvertebrates) and fish tissue samples to evaluate the macroinvertebrate community structure and bioaccumulation of trace metals in fish tissue in Big Deer Creek and in Upper Blackbird Creek located within Salmon-Cobalt Ranger District of the Salmon National Forest. This biological monitoring project and summary report has been prepared for Formation's Idaho Cobalt Project in accordance with Formation's final National Pollutant Discharge Elimination System (NPDES) permit number ID-002832-1.

#### 2.0 SAMPLING APPROACH

Based on locations identified in the Idaho Cobalt NPDES Quality Assurance Project Plan (TELESTO, 2010) and Biological Monitoring and Assessment Program (ENVIRON, 2009), one macroinvertebrate monitoring station and three fish tissue monitoring stations were established within the Salmon-Cobalt Ranger District of the Salmon National Forest. Samples were collected from September 4<sup>th</sup>, 2012 through September 5<sup>th</sup>, 2012.

#### 2.1 SITE SELECTION AND LOCATIONS

One macroinvertebrate monitoring station (BDC01) and one fish tissue monitoring station (BDC-01-01) was established in Big Deer Creek, downstream of Formation's proposed water treatment discharge outfall 001. Site BDC01 was selected to assess potential changes in the macroinvertebrate community structure. Site BDC-01-01 was selected to assess potential fish tissue bioaccumulation. Fish tissue concentrations are monitored for bioaccumulation of metals so that tissue concentrations can be compared prior to discharge to post discharge. Macroinvertebrate community structure is monitored so that macroinvertebrate composition can be compared prior to discharge to post discharge.

One fish tissue monitoring station was established in Big Deer Creek (BDC-02) upstream of Formation's proposed water treatment discharge outfall 001. An additional fish tissue monitoring reference station was established in Upper Blackbird Creek (UBC-01). The macroinvertebrate sampling locations are presented in Figure 1. Fish tissue monitoring locations are presented in Figure 2 and Figure 3.

#### 3.0 SAMPLING METHODS

Beneficial Use Reconnaissance Program Protocols (BURP) developed by the Idaho Department of Environmental Quality (DEQ, 2007) was used to evaluate the biological assemblages and physical habitat structure. Included in the BURP are measures of water quality, collection of benthic macroinveretbrates and evaluations of physical habitat. Embeddedness and substrate size, one of the most important determinations of habitat for fish and macroinvertebrates were evaluated by conducting a modified Wolman Pebble Count (Wolman et al., 1954) to quantify substrate size distribution in riffle habitats. Sampling methods are described below.

#### 3.1 IN SITU WATER QUALITY

In situ water quality measurements were collected at each monitoring station including the freshwater fish pond and included instantaneous measurements of pH (standard units), conductivity (micromhos per centimeter) [µmhos/cm]), water temperature (degrees Celsius [°C]), dissolved oxygen (DO) (milligrams per liter [mg/L]) and percent DO saturation. These measurements serve to identify water quality conditions which may affect aquatic life. In situ water quality measurements were collected prior to collection of fish and macroinvertebrates and habitat evaluations. An YSI 556 multi-parameter field instrument, calibrated prior to use, was positioned at approximately 0.5 feet in the water column in an undisturbed area of the monitoring station. Once the YSI stabilized, in situ water quality measurements were recorded. YSI 556 calibration results are included in Appendix A. In addition, stream discharge was measured utilizing a Marsh McBirney Flo-Mate 2000 Digital Flow Meter.

#### 3.2 MACROINVERTEBRATE SAMPLING

Macroinvertebrates were collected on September 4<sup>th</sup>, 2012 under Idaho Department of Fish and Game (IDFG) Scientific Collecting Permit No. F-12-12-12 (Appendix B). To minimize impacts to the benthic community in Big Deer Creek, macroinvertebrate community sampling was only performed. Due to their limited mobility and relatively long life span, macroinvertebrates integrate and reflect water quality effects over time and are excellent indicators of stress in aquatic systems. Additionally, macroinvertebrates with certain environmental tolerances may provide some insight into the presence of water toxicity.

Macroinvertebrate sampling followed bioassessment methodologies of the IDEQ BURP. The IDEQ BURP methodology includes qualitative habitat evaluations, macroinvertebrate collections and processing techniques, and taxa identification procedures. For the Idaho Cobalt Project, quantitative macroinvertebrate samples were collected using a Hess Sampler fitted with a 500 micron (μm) mesh collection net. The macroinvertebrate sampling reach was approximately 30-times the bankfull width which equated to 450 feet (137 meters). Three evenly spaced riffle transects (T1, T2, and T3) (Figure 1) were established within BDC01and macroinvertebrate samples were collected from each separate transect for a total of three macroinvertebrate samples. To provide consistency in the sampling design, the Hess Sampler was used to collect macroinvertebrates at all 3 transects.

#### 3.3 MACROINVERTEBRATE HANDLING AND ANALYSIS

Macroinvertebrate samples were stored and preserved in individual 1-liter Nalgene® High-Density Polyethylene (HDPE) sample containers with 99 percent isopropyl. Sample containers were labeled both inside and outside with labels containing the following information: station number, stream name, date and time of collection, and sample type. Macroinvertebrate samples were checked for adequate preservation, placed inside sampling coolers, and were secured in locked field vehicles for the duration of the project.

Upon return from the field, macroinvertebrate samples were shipped by ground transport to EcoAnalysts, Inc., in Moscow, Idaho. Marcoinvertebrate samples were processed following the IDEQ BURP methodology of removing the first 500 animals and identifying the invertebrates to species or genus/species subgroups whenever possible. Each sample was mixed thoroughly on a sieve and split into eight homogeneous fractions. Each of the eight fractions was placed in a numbered tray. A random number generator was used to select the order in which the trays were sorted until the required total of 500 organisms per sample was reached or, if there were fewer than 500 organisms present in a sample, until all organisms were removed. The fraction of sample sorted to obtain the 500 invertebrates was recorded so that invertebrate abundance can be converted to number of organisms/meter squared (m²) for comparison to future studies.

#### 3.4 BIOTIC INDICES

Macroinvertebrate data was evaluated using the Stream Macroinvertebrate Index (SMI) developed by the IDEQ as part of their ecological assessment approach to determine appropriate life use support in Idaho's streams. The component metrics of the SMI are as follows:

- Total Taxa Number of distinct taxa found in the macroinvertebrate assemblage at each station. Generally, the number of taxa decreases in response to increasing perturbation.
- Ephemeroptera Taxa Number of mayfly taxa, which generally decreases in response to increasing perturbation.
- Plecoptera Taxa Number of stonefly taxa, which generally decreases in response to increasing perturbation.
- Trichoptera Taxa Number of caddisfly taxa, which generally decreases in response to increasing perturbation.
- % Plecoptera Percent of sample that is stonefly nymphs. Predicted to decrease in response to increasing perturbation.
- Hilsenhoff Biotic Index (HBI) Abundance-weighted average tolerance to pollution. Originally a
  measure of tolerance to organic pollutants, but commonly used for evaluating responses to
  organic and toxic pollutants. Predicted to increase in response to increasing perturbation.
- % 5 Dominant Taxa Percent of the sample that are the five most dominant taxa. Predicted to increase in response to increasing perturbation.
- Scraper Taxa Number of invertebrate taxa that feed by scraping. This metric provides an
  indication of the riffle community food base (e.g. periphyton). Scrapers increase with increased
  abundance of periphyton and decrease as fine particle material increases. Their abundance
  generally decreases in response to increasing perturbation.
- Clinger Taxa Number of invertebrate taxa that are clingers. Clingers have fixed retreats or
  adaptations for attaching to surfaces in flowing water. They are adapted to life in running waters
  and are sensitive to hydrologic perturbation, habitat disturbance, and other pollutants. Their
  abundance generally decreases in response to increasing perturbation.

In addition to the metrics used in the calculation of the SMI, total invertebrate abundance (density), mayfly abundance, % mayflies, biomass and an index of metal tolerance was evaluated.

#### 3.5 HABITAT ASESSMENT

Physical habitat quality is a major determinant of biological diversity of stream macroinvertebrate communities. In conjunction with macroinvertebrate sampling, a visual qualitative aquatic and riparian habitat assessment was completed in BDC - 01 and BDC - 02. The visual assessment of aquatic and riparian habitat is consistent with IDEQ BURP and parameters assessed as part of the habitat evaluation include stream discharge, canopy cover, in-stream cover, embeddedness in riffles and pools, channel shape, disruptive pressure, zone of influence, pool substrate characteristics and pool variability. Additional stream characteristics were recorded and included large organic debris, pool count, stream sinuosity, and Rosgen stream type. While these additional stream characteristics do not receive habitat assessment scores they still provide valuable stream habitat data that can be evaluated through time.

#### 3.6 SUBSTRATE SIZE CHARACTERIZATION

Substrate characteristics are important determinants of habitat for fish and macroinvertebrates in streams (Kaufmann and Robison 1998, Kaufmann et al. 1999), and are often sensitive indicators of anthropogenic impacts on streams (Minshall et al 1985). Substrate size characterization was used to evaluate pre and post discharge effects on BDC - 01. Cobble-sized substrate provides the greatest amount of usable habitat to benthic macroinvertebrates, while smaller sized substrate offers reduced habitat for colonization (Green et al. 2000). Substrate size characterization was evaluated using the modified Wolman Pebble Count (Wolman et al., 1954). Results of the pebble count are discussed in Section 4.5.

#### 3.7 FISH TISSUE COLLECTION

A total of 30 fish tissue samples were collected by rod and reel during September 4<sup>th</sup> and 5<sup>th</sup>, 2012 under IDFG Scientific Collecting Permit No. F-12-12-12 (Appendix B). Fish tissue samples were collected following the protocols as found in IDEQ's Implementation Guidance for the Idaho Mercury Water Quality Criteria (IDEQ 2005).

Ten individual fish tissue samples were collected from each monitoring station (Figure 2 and Figure 3). The species along with species length, sample location, date and time of collection and GPS coordinates were recorded on standardized field data sheets are provided in Appendix C. Each collected fish was also digitally photographed with an individual sample identifier based on the date and sample location. Digital photographs are provided on compact disk. Once collected and logged fish tissue samples were packaged and stored on ice in a cooler for the duration of the sampling event. Samples were frozen upon return

from the field and then were shipped on dry ice to ALS Environmental (formerly Columbia Analytical Services) in Kelso, Washington for chemical analyses.

#### 3.8 FISH TISSUE HANDLING AND ANALYSIS

Fish tissue samples were handled according to the protocols outlined in the IDEQ's Implementation Guidance for the Idaho Mercury Water Quality Criteria (IDEQ 2005) which were adopted from the Idaho Fish Consumption Advisory Program (IFCAP) and United States Geological Survey (USGS) sampling techniques. This included clean sampling handling techniques for low level metals analysis to preclude false positives arising from sample collection, sample handling, or analysis.

Whole individual fish samples were wrapped in Glad ® Plastic Wrap and packaged individually in resealable plastic bags (e.g. Ziploc™). To ensure sample bags did not leak, samples were individually double bagged and samples from an individual site were packaged in a single, larger Ziploc™ bag. To ensure tissue samples were prepared in a laboratory clean-room environment using non-contaminating techniques, whole fish samples were shipped to ALS Environmental in Kelso, Washington for chemical analysis. Per the IDEQ mercury water quality criteria guidance (IDEQ, 2005), all fish tissue samples were analyzed as fillets without skin. Since the proposed sample number is relatively small, individual fillet samples were homogenized and were analyzed for total aluminum, arsenic, cadmium, cobalt, lead, manganese, mercury, nickel selenium, thallium and zinc. Fish tissue samples were first analyzed for total mercury and would be only analyzed for methylmercury if total mercury concentrations were within 20 percent of the IDEQ fish tissue mercury criterion of 0.3 milligrams per kilogram on a wet weight basis (mg/kg ww).

FORMATION CAPITAL CORPORATION, U.S. IDAHO COBALT PROJECT NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT



FORMATION CAPITAL CORPORATION, U.S. IDAHO COBALT PROJECT NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT



FORMATION CAPITAL CORPORATION, U.S. IDAHO COBALT PROJECT NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT



THIS PAGE LEFT INTENTIONALLY BLANK

FORMATION CAPITAL CORPORATION, U.S. IDAHO COBALT PROJECT NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

#### 3.9 CHAIN OF CUSTODY

Samples collected in the field represent physical evidence and their possession must be traceable from the time of collection until the data are ultimately used. Proper chain of custody (COC) procedures was used to maintain and document sample possession. Completed COC forms accompanied each macroinvertebrate and fish tissue sample to their respective laboratory. Executed COC forms are provided in Appendix D.

## 3.9.1 QUALITY ASSURANCE AND QUALITY CONTROL

An inherent difficulty exists in generating blanks for solid samples such as fish; there is no blank tissue that can be used. Fish fillets are inherently difficult to contaminate because they are a solid medium. Only the surface is exposed to contamination before being pureed. Also, the much higher concentrations of mercury and other contaminants in fillets compared to water are not easily changed by small amounts of contamination. Since there will be no dissecting or filleting of fish in the field, deionized water washes or rinses of equipment did not take place. Therefore, field blanks were not analyzed in this study.

Homogenization blanks were used to assess potential contamination from analytical equipment. Homogenization blanks are equivalent to equipment blanks and were collected by running deionized water through the homogenization equipment. ALS Environmental analyzed one homogenization blank per sampling round or 1 for every 10 samples, whichever is greater. Method blanks were also used to assess potential contamination from analytical equipment. ALS Environmental analyzed one method blank for every sample batch or every 20 samples, whichever is more frequent. Method blanks consist of an analyte-free matrix that is subjected to the entire analytical process.

For analyzing macroinvertebrate samples, performance objectives associated primarily with measurement error were followed. Measurement error and performance objectives followed EPA Guidance for Quality Assurance Plans EPA240/R-02/009.

#### 4.0 RESULTS AND DISCUSSION

#### 4.1 IN SITU WATER QUALITY

In situ water quality measurements (pH, conductivity, water temperature, dissolved oxygen (DO) and DO percent saturation) were collected at each of the fish tissue and macroinvertebrate sampling stations including the freshwater fish pond (Table 1). The pH values are not considered acidic, they are slightly basic and ranged from 7.58 to 7.87 and are in the acceptable range for salmonid and macroinvertebrate species. Water temperature and DO are two of the most critical factors in determining salmonid survival. For many species of salmonids, exposure to low levels of DO (less than 5.0 - 6.0 mg/l) and exposure to high water temperatures (above 25°C) can result in mortality. Water temperature and DO were within the optimal range for spawning, egg development and growth. In situ water quality measurements of DO ranged from 10.06 mg/l to 12.90 mg/l and water temperature ranged from 5.37 °C to 10.27°C, indicating a cold water and oxygen-rich environment.

Table 1. In Situ Water Quality Measurements

| Station | Stream Name                 | Date   | T (°C) | pН   | DO<br>(mg/L) | DO (% sat.) | Conductivity (µmhos/cm) |
|---------|-----------------------------|--------|--------|------|--------------|-------------|-------------------------|
| BDC-01  | Big Deer Creek              | 9/4/12 | 8.36   | 7.58 | 11.45        | 97.3        | 108                     |
| BDC-02  | Big Deer Creek              | 9/4/12 | 10.27  | 7.87 | 10.24        | 95.9        | 84                      |
| UBC-01  | Upper<br>Blackbird<br>Creek | 9/5/12 | 5.37   | 7.77 | 12.90        | 102,6       | 75                      |
| FWFP    | Freshwater Fish<br>Pond     | 9/5/12 | 8.21   | 7.72 | 10.06        | 86.0        | 75                      |

#### 4.2 MACROINVERTEBRATES

Overall, 65 taxa were collected from 3 samples (Appendix E). Macroinvertebrates were identified to the lowest practical taxon. As discussed previously, the choice of core metrics was consistent with the Stream Macroinvertebrate Index (SMI) developed by the IDEQ to determine appropriate life use support in Idaho's streams.

The results of the macroinvertebrate collection in riffle habitat show that:

- The number of all macroinvertebrates was 228, 447 and 500, at BDC 01 T1, T2 and T3, respectively;
- Idaho SMI basin ratings were rated "very good" for all three macroinvertebrate transects. TI was rated 94.64, T2 was rated 99.84 and T3 was rated 97.12;
- The Hilsenhoff Biotic Index (HBI) derives a community-based estimate of overall pollution at a given site. HBI tolerance values range from 0 -10, with 0 being the most pollution intolerant and 10 being the most pollution tolerant taxa. HBI values were 2.81, 3.19 and 3.13 for T1, T2 and T3 respectively. The low HBI values indicate the presence of sensitive (intolerant) organisms;
- The Metals Tolerance Index (MTI) is based upon a correlation of invertebrate species present in known metals contaminated streams versus those present in unimpacted streams. MTI values were 2.57, 2.58 and 2.51 for T1, T2 and T3 respectively. The low MTI values indicate the presence of sensitive (intolerant) organisms to metals contamination;
- The Fine Sediment Biotic Index (FSBI) is a measure of the number of species present that are
  tolerant of increased sediment in the stream substrate. FSBI values were 120, 153 and 144 for
  T1, T2 and T3. The high FSBI indicates there are more sediment tolerant species present in the
  sample;
- The Shannon-Weaver index is a measure of the number of species (i.e., diversity) and the number of individuals within each species (i.e., evenness). The Shannon-Weaver index values were 4.69, 4.79 and 4.42 for T1, T2 and T3. A Low Shannon-Weaver index value indicates low species diversity;
- The EPT Index, a summation of taxa in the pollution-sensitive Ephemeroptera (mayflies),

Plecoptera (stoneflies), and Trichoptera (caddisflies), is a richness measure specifically focusing on the presence/absence of pollution-sensitive fauna. The EPT values were 56.14, 56.60 and 48.00 percent for T1, T2 and T3 respectively. Mayflies, stoneflies and caddisflies are associated with healthy streams, the percent of mayflies, caddisflies and stoneflies indicate that water pollution is currently not a problem;

- A composition measure, percent Chironomidae plus Oligochaeta represents the numerical abundance of pollution-tolerant midges and aquatic worms. In a healthy, balanced macroinvertebrate community, percentages of pollution-tolerant organisms are minimal. This was the case in BDC01, percent Chironomidae plus Oligochaeta were 10.53, 19.91 and 10.20 at T1, T2 and T3 respectively;
- All identifiable macroinvertebrates were dried and weighted to calculate dry biomass. Extremely
  low biomasses were encountered at each macroinvertebrate transect. Biomass was 0.055 grams,
  0.157 grams and 0.118 grams for T1, T2 and T3 respectively.

#### 4.3 HABITAT ASSESSMENT SUMMARY

Numeric habitat ratings were developed for BDC - 01 and BDC - 02 using IDEQ BURP Habitat Assessment Protocol. Using this method, seven qualitative instream variables were evaluated for the entire sampling reach. Instream habitat parameters were each scored separately and individual habitat scores were summed to provide a total habitat score. Instream habitat scores present current habitat conditions of the stream, without considering historical or future conditions. Physical habitat scores for BDC - 01 and BDC - 02 are presented in Table 2. Additional instream characterization was conducted to assess potential fish and macroinvertebrate habitat. Additional characterization scores are not summed, are not added to the overall instream habitat scores and are identified in Table 2 with an asterisk.

The following habitat conditions were noted:

- Total habitat scores were 81 and 78 (out of a possible 115) for BDC 01 and BDC 02 respectively;
- The overall instream physical habitat conditions were considered very good for the two reaches;
- The instream conditions were similar for both Big Deer Creek reaches, including a substrate dominated by cobble with riffle embeddedness ranging between 25 to 50 percent;
- In both reaches pool variability was excellent, consisting of an even mix of deep and shallow pools;

- Pool substrate in both reaches was comprised of cobble and gravel with a soft clay or mud bottom;
- Large woody debris which provided stream stability and fish habitat was qualitatively assessed and was medium at BDC 02 and high at BDC 01;
- Instream cover for fish was optimal in both reaches. In BDC 01 instream cover was greater than 50 percent, while instream cover in BDC 02 was 40 percent;
- BDC 01 was absent of overhanging canopy cover which reduces allochtonous input and can increase stream temperature. BDC 02 had a good mix of overhanging canopy.

Table 2. Physical Habitat Assessment Data

| Table 2.                           | Physical Habita | t Assessi | ment Da | ita |    |    |
|------------------------------------|-----------------|-----------|---------|-----|----|----|
| NI NI                              |                 | BDC       | BDC     | T1  | T2 | Т3 |
| Habitat Parameter                  |                 | -01       | -02     |     |    |    |
| Instream cover (for fish)          |                 | 18        | 17      |     |    |    |
| Embeddedness (in riffles)          |                 | 11        | 10      |     |    |    |
| Channel Shape                      |                 | 3         | 3       |     |    |    |
| Disruptive Pressures (on streamb   | anks)           | 9         | 9       |     |    |    |
| Zone of Influence (width of ripari | an zone)        | 8         | 8       |     |    |    |
| Pool Substrate Characteristics     |                 | 15        | 15      |     |    |    |
| Pool Variability                   |                 | 17        | 16      |     |    |    |
| Canopy Closure - BDC -01 *         | Left Bank       |           |         | 03  | 02 | 14 |
|                                    | Center Up       |           |         | 00  | 00 | 00 |
|                                    | Center Down     |           |         | 00  | 00 | 00 |
|                                    | Right Bank      |           |         | 02  | 00 | 00 |
| Canopy Closure - BDC-02 *          | Left Bank       |           |         | 05  | 05 | 08 |
|                                    | Center Up       |           |         | 06  | 08 | 05 |
|                                    | Center Down     |           |         | 06  | 05 | 06 |
|                                    | Right Bank      |           |         | 09  | 05 | 04 |
| Pool Count *                       |                 | 11        | 8       |     |    |    |
| Large Organic Debris (LOD) * 1     |                 | 33        | 11      |     |    |    |
| Rosgen Stream Type *               |                 | В         | В       |     |    |    |
| Submerged Cover (%) *              |                 | 40        | 35      |     |    |    |
| Undercut Banks (%) *               |                 | 15        | 10      |     |    |    |
| Average Pool Depth (ft) * 2        |                 | 2.2       | 2.9     |     |    |    |
| Overhead Cover (%) *               |                 | 15        | 45      |     |    |    |
| Stream Sinuosity *                 |                 | M         | M       |     |    |    |
| Total Habitat Score                |                 | 81        | 78      |     | _  |    |

<sup>\*</sup> Score does not count towards habitat assessment

#### 4.4 STREAM DISCHARGE SUMMARY

<sup>&</sup>lt;sup>1</sup>LOD has a diameter greater than 10 centimeters (4 inches) and a length greater than one meter (39 inches)

M -Riffle-dominated, moderate sinuosity

<sup>&</sup>lt;sup>2</sup> Average pool depth is based on four representative pool measurements

Using a Marsh-McBirney Digital Flo-Mate 2000 Digital Flow Meter, twenty stream discharge measurements were collected downstream of transect 3 in BDC - 01. Stream discharge measurements are provided in Table 3. Stream discharge was measured during summer base flow which is a measure of minimum stream size and an indicator of potential fish and macroinvertebrate habitat. Total stream discharge was 7.88 cubic feet per second (CFS) which is optimal for fish spawning and fish migration paths. Flow patterns also showed a positive relationship between the proportion and abundance of stoneflies, mayflies and caddisflies collected. This is not surprising, as these species are known in general to require cold, well-oxygenated, flowing water (Merritt et al., 2008; Wiggins, 1996; Stewart & Stark, 2002).

| Table 3. Stream Discharge Measurements – BDC - 01 |            |                 |            |                      |                          |  |  |  |
|---------------------------------------------------|------------|-----------------|------------|----------------------|--------------------------|--|--|--|
| Tape (ft)                                         | Width (ft) | Depth (ft)      | Area (ft²) | Velocity<br>(ft/sec) | Total Discharge (ft/sec) |  |  |  |
| (LWE) 0                                           | :          |                 |            |                      |                          |  |  |  |
| 1.3                                               | 0.55       | 0.04            | 0.02       | 0.3                  | 0.01                     |  |  |  |
| 2.0                                               | 0.65       | 0.13            | 0.08       | 0.94                 | 0.08                     |  |  |  |
| 2.7                                               | 0.50       | 0.46            | 0.23       | 1.22                 | 0.28                     |  |  |  |
| 3.4                                               | 0.45       | 0.43            | 0.19       | 1.67                 | 0.32                     |  |  |  |
| 4.1                                               | 0.40       | 0.69            | 0.28       | 1.96                 | 0.55                     |  |  |  |
| 4.8                                               | 0.45       | 0.78            | 0.35       | 1.91                 | 0.67                     |  |  |  |
| 5.5                                               | 0.50       | 0.69            | 0.35       | 1.18                 | 0.41                     |  |  |  |
| 6.2                                               | 0.50       | 0.72            | 0.36       | 2.06                 | 0.74                     |  |  |  |
| 6.9                                               | 0.50       | 0.75            | 0.38       | 1.91                 | 0.73                     |  |  |  |
| 7.6                                               | 0.50       | 0.66            | 0.33       | 1.82                 | 0.60                     |  |  |  |
| 8.3                                               | 0.50       | 0.56            | 0.28       | 1.80                 | 0.50                     |  |  |  |
| 9.0                                               | 0.45       | 0.59            | 0.27       | 1.50                 | 0.41                     |  |  |  |
| 9.7                                               | 0.40       | 0.56            | 0.22       | 1.69                 | 0.37                     |  |  |  |
| 10.4                                              | 0.45       | 0.59            | 0.27       | 1.55                 | 0.42                     |  |  |  |
| 11.1                                              | 0.50       | 0.52            | 0.26       | 1.52                 | 0.40                     |  |  |  |
| 11.5                                              | 0.50       | 0.56            | 0.28       | 1.37                 | 0.38                     |  |  |  |
| 12.0                                              | 0.50       | 0.59            | 0.30       | 1.18                 | 0.35                     |  |  |  |
| 12.7                                              | 0.50       | 0.56            | 0.28       | 1.32                 | 0.37                     |  |  |  |
| 13.5                                              | 0.50       | 0.43            | 0.22       | 0.89                 | 0.20                     |  |  |  |
| 14.7                                              | 0.65       | 0.20            | 0.13       | 0.72                 | 0.09                     |  |  |  |
| (RWE) 0                                           |            |                 |            |                      |                          |  |  |  |
|                                                   | To         | tal Discharge ( | CFS)       |                      | 7.88                     |  |  |  |

#### 4.5 SUBSTRATE SIZE CHARACTERIZATION

Stream substrate is the site of most biotic activity such as algae growth, insect growth and development,

fish egg incubation, and small fish refuge (Davis et al., 2001). Fine sediment and its accumulation can be detrimental to salmonid spawning (a beneficial use) since it may limit the quality and quantity of the inter-gravel spaces that are critical for egg incubation (Maret et al., 1993; Scrivener et al., 1989; Young et al., 1991). Following the sample design and analysis employed by IDEQ BURP, a modified Wolman Pebble Count (Wolman et al., 1954) was conducted to quantify substrate size and composition at the same three riffle transects where macroinvertebrate samples were collected. At each transect, substrate particles (e.g., cobble, sand, gravel, etc.) were selected at evenly spaced intervals across each transect (left, left middle, middle, right middle, and right), were measured (to the nearest millimeter [mm]), and were recorded on Wolman Pebble Count Data Sheets (Appendix F). A minimum of 50 particle measurements were made per riffle.

Wolman Pebble Count Data revealed predominate substrate size consisted of Very Coarse Pebbles (31.1 mm to 64 mm), Small Cobble (64.1 mm to 128 mm), and Large Cobble (128.1 mm to 256 mm). The mean substrate size was calculated and ranged between 74.4 mm to 149.3 mm. Cobble-sized substrate provides the greatest amount of usable habitat to benthic macroinvertebrates. However, the embeddedness (the degree to which very coarse pebbles and larger sizes of particles (cobbles and boulders) are surrounded or covered by fine sediment in riffle and pool habitat ranged from 20 to 90 percent and embeddedness averaged 55 percent.

#### 4.6 FISH TISSUE CONCENTRATIONS

In accordance with the IDEQ mercury water quality criteria guidance (IDEQ, 2005), all fish tissue samples were analyzed as fillets without skin. Each individual fillet sample was homogenized and was analyzed for total mercury, aluminum, arsenic, cadmium, cobalt, lead, manganese, nickel selenium, thallium and zinc. Fish tissue samples were first analyzed for total mercury and were to be only analyzed for methylmercury if total mercury concentrations were within 20 percent of the IDEQ fish tissue mercury criterion of 0.3 milligrams per kilogram on a wet weight basis (mg/kg ww). A summary of analytical results for each subset of metal compounds is provided below. A copy of the fish tissue analytical report is provided on compact disk.

#### Mercury

EPA Method 1631, Revision E, Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor

Atomic Fluorescence Spectrometry was used for the determination of mercury (dry & wet weight) in fish tissue. Mercury was detected in all fish tissue samples. Dry weight mercury concentrations in BDC - 01 ranged from 0.0774 milligrams per kilogram (mg/Kg) to 0.300 mg/kg. The average dry weight mercury concentration was 0.185 mg/Kg. Dry weight mercury concentrations in BDC - 02 ranged from 0.166 mg/Kg to 0.498 mg/Kg. The average dry weight mercury concentration was 0.296 mg/Kg. Dry weight mercury concentrations in UBC - 01 ranged from 0.154 mg/Kg to 0.618 mg/Kg. The average dry weight mercury concentration was 0.258 mg/Kg.

Wet weight mercury concentrations in BDC - 01 ranged from 0.01 mg/Kg to 0.06 mg/kg. The average wet weight mercury concentration was 0.04 mg/Kg. Wet weight mercury concentrations in BDC - 02 ranged from 0.03 mg/Kg to 0.103 mg/Kg. The average wet weight mercury concentration was 0.06 mg/Kg. Wet weight mercury concentrations in UBC - 01 ranged from 0.03 mg/Kg to 0.117 mg/Kg. The average wet weight mercury concentration was 0.05 mg/Kg. Mercury concentrations in all fish tissue samples were below the IDEQ fish tissue mercury criterion of 0.3 mg/Kg on a wet weight basis (mg/Kg ww). Therefore, methylmercury concentrations in fish tissue were not analyzed. A complete summary of all metal results are presented in Tables 4 through 13 (Appendix G).

#### Selenium

EPA Method 7742, Atomic Absorption, Borohydride Reduction was used for the determination of selenium (dry & wet weight) in fish tissue. Selenium was detected in all fish tissue samples. Dry weight selenium concentrations in BDC – 01 ranged from 0.63 mg/Kg to 2.08 mg/Kg. The average dry weight selenium concentration was 1.58 mg/Kg. Dry weight selenium concentrations in BDC - 02 ranged from 0.29 mg/Kg to 2.66 mg/Kg. The average dry weight selenium concentration was 1.67 mg/Kg. Dry weight selenium concentrations in UBC - 01 ranged from 0.51 mg/Kg to 1.93 mg/Kg. The average dry weight selenium concentration was 1.42 mg/Kg. Wet weight selenium concentrations in BDC – 01 ranged from 0.14 mg/Kg to 0.48 mg/Kg. The average wet weight selenium concentration was 0.347 mg/Kg. Wet weight selenium concentration was 0.424 mg/Kg. Wet weight selenium concentrations in UBC - 01 ranged from 0.12 mg/Kg to 0.40 mg/Kg. The average wet weight selenium concentration was 0.292 mg/Kg. A complete summary of all metal results are presented in Tables 4 through 13 (Appendix G).

#### Trace Metals

EPA Method 200.8, Inductively Coupled Plasma – Mass Spectrometry was used for the determination of trace metals (dry & wet weight) in fish tissue. For the Idaho Cobalt project, trace metals consist of aluminum, arsenic, cadmium, cobalt, lead, manganese, nickel, thallium and zinc. Trace metals were detected in extremely low concentration ranges in all fish tissue samples. A complete summary of all metal results are presented in Tables 4 through 13 (Appendix G).

#### 4.7 CONCLUSIONS

In situ water quality measurements indicate pH values are not acidic, they are slightly basic and ranged from 7.58 to 7.87 and are in the acceptable range for fish and macroinvertebrate species. Water temperature and DO, two of the most critical limiting factors for fish and macroinvertebartes are within the optimal range for spawning, egg development and growth. In situ water quality measurements of DO ranged from 10.06 mg/l to 12.90 mg/l and water temperature ranged from 5.37 °C to 10.27°C, indicating a cold water and oxygen-rich environment.

Overall, 65 macroinvertebrate taxa were collected from 3 samples in BCD – 01. The Idaho SMI basin ratings were rated "very good" for all three macroinvertebrate samples, T1 was rated 94.64, T2 was rated 99.84 and T3 was rated 97.12. Of the individual core metrics, percent EPT revealed there is a good presence of pollution-sensitive fauna indicating good water quality. Conversely, the percent Chironomidae plus Oligochaete were low indicating the abundance of pollution-tolerant midges was low. Other metrics sensitive to pollution and metals contamination, including HBI and MTI were also low indicating water pollution and metals contamination was low. The Fine Sediment Biotic Index (FSBI) was high, ranging from 120 to 153, indicating there are more sediment tolerant species present. The Shannon-Weaver index revealed low species diversity. In addition to low species diversity, macroinvertebrate biomass was extremely low ranging from 0.055 grams to 0.118 grams.

Total habitat scores were 81 and 78 (out of a possible 115) for BDC - 01 and BDC - 02 respectively. The instream conditions were similar for both Big Deer Creek reaches, including a substrate dominated by cobble with riffle embeddedness ranging between 25 to 50 percent. In both reaches pool variability was excellent, consisting of an even mix of deep and shallow pools. Instream cover for fish was optimal in both reaches. In BDC – 01 instream cover was greater than 50 percent, while instream cover in BDC – 02 was 40 percent.

Thirty individual fish tissue samples were analyzed for total mercury, aluminum, arsenic, cadmium,

FORMATION CAPITAL CORPORATION, U.S.
IDAHO COBALT PROJECT
NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

cobalt, lead, manganese, nickel selenium, thallium and zinc. Low concentrations of metals including mercury were detected in all fish tissue samples. Mercury concentrations were below the IDEQ fish tissue mercury criterion of 0.3 milligrams per kilogram on a wet weight basis (mg/kg ww) and therefore methylmercury concentrations were not analyzed.

#### 5.0 REFERENCES

Davis, J., G. Minshall, C. Robinson and P. Landres. 2001. Monitoring Wilderness Stream Ecosystems. Report General Technical Report, RMRS-GTR-70. U.S. Dept. of Agriculture, U.S. Forest Service, Roc ky Mountain Research Station. Ogden, UT. 137 pp.

Dieterich, M. 1992. Insect community composition and physico-chemical processes in summerdry streams of western Oregon. Ph. D. thesis, Oregon State University, Corvallis OR, 191 pp.

Environ International Corp. (ENVIRON). 2009. Biological Assessment and Monitoring Program. Revision 2 November 2009

Feminella, J. W., 1996. Comparison of benthic macroinvertebrates assemblages in small streams along a gradient of flow permanence. Journal of the North American Benthological Society 15: 651–669.

Green, J., M. Passmore, and H. Childers. 2000. A Survey of the condition of streams in the primary Region of Mountaintop Mining/Valley Fill Coal Mining. U.S. EPA, Region 3, ESD, Aquatic Biology Group. Wheeling, West Virginia.

Idaho Department of Environmental Quality (IDEQ). 2005. Implementation Guidance for the Ida ho Mercury Water Quality Criteria. Idaho Department of Environmental Quality. Boise, ID, April.

Idaho Department of Environmental Quality (IDEQ). 2007. Beneficial Use Reconnaissance Program Field Manual for Streams. Boise, Idaho.

Kaufm a nn, P.R. and E.G. Robison. 1998. Physical Habitat Characterization. pp 77-118 In: J.M. Lazorchak, D.J. Klem m and D.V. Peck (eds.)). Environmental Monitoring and assessment Program — Surface W a ters: Field Operations and Methods Manual for Measuring the Ecological Condition of W a deable Streams. U. S. Environmental Protection Agency, Office of Research and Development, Wa shington, D.C. EPA/620/R-94/004F.

Kaufm a nn, P.R., P. Levine, E.G. Robison, C. Seeliger, and D.V. Peck. 1999. Quantifying Physical Habitat in Wa deable Streams. U.S. Environmental Protection Agency, W a shington, D.C. EPA/620/R-99/003.

Maret, T., T. Burton, G. Harvey and W. Clark. 1993. Field Testing of New Monitoring Protocols to Assess Brown Trout Spawning Habitat in an Idaho Stream. North American Journal of Fisheries Management 13(3): 567-580.

Merritt, R. W., Cummins, K. W., and Berg, M. B. (eds.). 2008. An introduction to the aquatic insects of North America, 4thed. Kendall/Hunt Publishing Company, Dubuque IA, 1158 pp.

Minshall, G.W., K.W. Cummins, RC Petersen, C.E. Cushing, D.A. Bruns, J.R. Medell, and R.L. Vannote. 1985. Developments in stream ecosystem theory. Can. J. Fish. Aquat. Sci. 42: 1045-1055.

FORMATION CAPITAL CORPORATION, U.S.
IDAHO COBALT PROJECT
NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

ohnson, R., T. Wiederholm and D. Rosenberg. 1993. Freshwater biomonitoring using individual organisms, populations, and species assemb lages of benthic macroinvertebrates. In Freshwater biomonitoring and benthic macroinvertebrates. V. H. R. D.M Rosenberg (ed.). Chapman and Hall. New York, NY. 4. 40-158.

Stewart, K. W. and Stark, B. P. 2002. Nymphs of North American stonefly genera (Plecoptera). The Caddis Press, Columbus OH. 510 pp.

Telesto Solutions, Inc. (Telesto). 2010. NPDES Quality Assurance Project Plan for the Idaho Cobalt ProjectWiggins, G. B. 1996. Larvae of the North American caddisfly genera (Trichoptera), 2<sup>nd</sup> ed. University of Toronto Press, Toronto Canada. 457 pp.

Wolman, M.G. 1954. A Method of Sampling Coarse River-bed Material. Transactions of American Geophysical Union 35: 951-956.

# APPENDIX A

YSI CALIBRATION RESULTS



# INSTRUMENT CALIBRATION REPORT

## Pine Environmental Services, Inc.

7332 S. Alton Way, Bldg. 13, Suite E. Centennial, CO 80112 Toll-free: (866) 960-PINE (7463)

# Pine Environmental Services, Inc.

Instrument ID 18971
Description YSI 556
Calibrated 8/28/2012

Manufacturer YSI
Model Number 556
Serial Number/ Lot 11J102923
Number
Location Colorado

Department

Test Performed: Yes

Status Pass Temp °C 24 Humidity % 25

As Left Result: Pass

State Certified

| <u> </u>                   |                |                                         |                 |                        |        |             |           |
|----------------------------|----------------|-----------------------------------------|-----------------|------------------------|--------|-------------|-----------|
|                            |                | <u>Calib</u>                            | ration Specific | <u>ati</u> on <u>s</u> |        |             |           |
| Gro                        | up# 1          |                                         |                 | Range Acc %            |        |             |           |
| Group N                    | ame PH         |                                         |                 | Reading Acc %          | 3.0000 |             |           |
| Stated A                   | Accy Pct of Re | ading                                   |                 | Plus/Minus             | 0.00   |             |           |
| Nom In Val / In Val        | In Type        | Out Val                                 | Out Type        | Fnd As                 | Lft As | <u>Dev%</u> | Pass/Fail |
| 7.00 / 7.00                | PH             | 7.00                                    | PH              | 7.00                   | 7.00   | 0.00%       | Pass      |
| 4.00 / 4.00                | PH             | 4.00                                    | PH              | 4.00                   | 4.00   | 0.00%       | Pass      |
| 10.00 / 10.00              | PH             | 10.00                                   | PH              | 10.00                  | 10.00  | 0.00%       | Pass      |
| Gro                        | ար# 2          |                                         |                 | Range Acc %            | 0.0000 |             |           |
|                            | lame Conducti  | vity                                    |                 | Reading Acc %          |        |             |           |
| •                          | Accy Pct of Re | •                                       |                 | Plus/Minus             | 0.000  |             |           |
| Nom In Val / In Val        | In Type        | Out Val                                 | Out Type        | Fnd As                 | Lft As | Dev%        | Pass/Fail |
|                            | ms/cm          | 1.413                                   | ms/cm           | 1.413                  | 1.413  | 0.00%       | Pass      |
| Gro                        | oup# 3         |                                         |                 | Range Acc %            | 0.0000 |             |           |
|                            | Name Redox (C  | ORP)                                    |                 | Reading Acc %          | 3.0000 |             |           |
| Stated                     | Accy Pct of Re | eading                                  | 1               | Plus/Minus             | 0.00   |             |           |
| Nom In Val / In Val        | In Type        | Out Val                                 | Out Type        | Fnd As                 | Lft As | Dev%        | Pass/Fail |
|                            | mv             | 240.00                                  | mv              | 240.00                 | 240.00 | 0.00%       | Pass      |
| Gre                        | oup# 4         | *************************************** |                 | Range Acc %            | 0.0000 |             |           |
|                            | Name Disolved  | Oxygen Span                             |                 | Reading Acc %          | 3.0000 |             |           |
| Stated Accy Pct of Reading |                |                                         |                 | Plus/Minus             | 0.00   |             |           |
| Nom In Val / In Val        | In Type        | Out Val                                 | Out Type        | Fnd As                 | Lft As | Dev%        | Pass/Fail |
|                            |                | 100.00                                  | %               | 100.00                 | 100.00 | 0.00%       | Pass      |
| Gre                        | oup # 5        |                                         |                 |                        |        |             |           |
| l .                        | Name Dissolve  | d Oxygen Zero                           |                 |                        |        |             |           |

As Found Result: Pass

FORMATION CAPITAL CORPORATION, U.S.
IDAHO COBALT PROJECT
NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

## APPENDIX B

SCIENTIFIC COLLECTION PERMIT AND REPORTING DOCUMENTS



# Idaho Dept. of Fish and Game 2012 Scientific Collecting Permit Permit # F-12-12-12 - Greg Hildebrand, Hildebrand & Associates, LLC

**ISSUED TO:** Greg Hildebrand

c/o Hildebrand & Associates, LLC

4623 E Pegasus Ct Boise, ID 83716 Start Date: 07/02/2012

Expiration: 12/31/2012 Doc# 749-12-000057

You and your sub-permittees are authorized to sample and/or collect fish in the below listed drainages utilizing the prescribed methods identified in this permit. You must be present during all collection activities. This permit must be in your or your sub-permittee's possession while in the field or transporting biological samples.

SUB-PERMITTEES: Amy Chadwick

PURPOSE: Specimen collection, presence/absence, density estimate, vouchering (up to stated limits)

SPECIES: Rainbow trout; brook trout; cutthroat trout; brown trout; up to thirty (30) total may be vouchered

APPROVED METHODS OF SAMPLING: Electrofishing, seining, hook-and-line

**GEOGRAPHIC AREAS OR WATERS:** Salmon National Forest - Big Deer Creek, South Fork Big Deer Creek, Blackbird Creek

**DISPOSITION OF SAMPLES**: All live nontarget fish will be released back into the water where they were captured. Whole fish samples will be shipped to Columbia Analytical Services, Inc. in Kelso, WA. See Condition #2 below concerning bull trout mortalities.

#### **PERMIT PROVISIONS:**

- This permit is not transferable, nor may its authority be delegated. It shall be produced for inspection
  upon request of any conservation officer or other authorized representative of the Idaho Department of
  Fish and Game. Any abuse or misuse of privileges granted by this permit shall be grounds for
  revocation.
- YOU ARE WORKING IN WATERS WHERE BULL TROUT ARE KNOWN TO EXIST: this permit authorizes you as an agent of Idaho Department of Fish and Game to "take" bull trout. Take is defined as: observe, harass, capture, handle/tag, mark, measure, release, and indirect mortality. Any observations or handling of bull trout must specifically be reported in your permit report. Bull trout mortalities will be reported to Scott Grunder (scott.grunder@idfg.idaho.gov) at IDFG within 72 hours. The report will include location, size, and mortality factor. As per USFWS direction, bull trout mortality may be disposed of in the stream where captured.
- No electrofishing is allowed in known bull trout spawning areas between August 15 and September 15.
   If spawning activity is observed during sampling, please document the location and avoid the area.
   Please note this information on your end-of-year report.
- 4. <u>Upon completion of work or upon expiration of this permit and/or prior to any request for renewal, a report shall be submitted within 30 days, to Idaho Department of Fish and Game, Bureau of Fisheries, 600 S. Walnut, P.O. Box 25, Boise, ID 83707, providing useful and comparable information on fish collected or waters sampled. Forms are included to assist in providing information.</u>

Questions: Fisheries Bureau - 208-334-3791

Or david.parrish@idfg.idaho.gov

### Idaho Dept. of Fish and Game 2012 Scientific Collecting Permit

Permit # F-12-12-12 - Greg Hildebrand, Hildebrand & Associates, LLC

- All stationary equipment used to collect fish and wildlife (nets, traps, etc.) will have an attached metal 5. tag bearing, in legible English, the name and current address of the permit holder.
- NO COLLECTIONS SHALL BE MADE UNDER THIS PERMIT UNTIL THE LOCAL CONSERVATION 6. OFFICER OR THE PANHANDLE REGIONAL OFFICE (TOM CURET) IS NOTIFIED WHERE AND WHEN THE COLLECTION IS TO BE MADE. THIS MUST BE DONE WITHIN 48 HOURS OF SAMPLING. A record of dates, times and persons notified shall be kept and submitted at the end of the year as part of the collecting report.
- A valid fishing license is needed to conduct angling surveys. 7.

Cc: Salmon Regional Office 208-756-2271 208-769-6274 (fax)

Virgil Moore, Director

Vig Q moore

June 29, 2012

Date Issued

Questions: Fisheries Bureau - 208-334-3791

Or david.parrish@idfg.idaho.gov

| Permit Number: F-12-12-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Permit Holder: Greg Hildebrand Affiliation: Hildebrand & Associates, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| A standard inventory data set will be required for any fish community or presence/absence sampling survey within the state. Additional data is welcomed; however, this minimum amount of information must be collected for each transect (site), and the form(s) returned as part of the required report. <b>DO NOT COMBINE TRANSECTS ONTO ONE FORM EVEN IF IN THE SAME STREAM.</b> If your report/data is compatible with the requirements of this form, they will be accepted. Please write legibly. <b>FAILURE TO COMPLETE THIS FORM AS REQUIRED MAY BE GROUNDS FOR FUTURE PERMIT DENIAL.</b> |  |  |  |  |  |  |  |  |  |
| Stream Name: Big Deer Creek Transect (Sample Site) No.: BDC 01 Collection Date: 09-04-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| Location: Big Deer Creek, SAlmon-Challis NF - Downstream of Proposed Discharge Outfall  (DO NOT LEAVE BLANK)  (GPS Coordinates of lower end of sampling reach − Latitude, Longitude, or UTM with zone datum)  45.10'0.1.1" 114.21'47.1"  Estimator (√): Direct observation (Snorkeling)  Mark/Recapture  Presence/Absence   Depletion (one or more electrofish passes)  Flook & Line  Water Temp. (C°): 8.36  Water Temp. (C°): 8.36                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Transect Length (M):137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Optional information on permanent fish barriers:  Location: N/A Height: N/A if manmade – type: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| NOTICE OF COLLECTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| IDFG Person Contacted:Tom Curet Date & Time of Contact: 8-31-12: 14:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Disposition of Fish: Columbia Analytical Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Report densities/CPUE in the table below. Indicate type of gear used. Record fishing effort and age class by species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Fish Species Gear Type Used Time Fished #fish/100m² or Age Class (specify column)  CPUE No. of 0 year No. of ≥ 1 year                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Rainbow Trout Hook & Line 1 Hour 10 Fish/Hr Zero 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Rambow Hour House Enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |

\*\*\*NUMBERS OF NON-GAME FISH OBSERVATIONS SHOULD BE RECORDED ON ELECTROFISHING DATA SHEET\*\*\*

| Stream Name: Big Deer Creek        | _ Transect (Sample Site) No.: BDC 01 | Collection Date: <u>09-04-12</u> |
|------------------------------------|--------------------------------------|----------------------------------|
| Location: Inside Salmon-Challis NF | Crew Leader: <u>Greg Hildebrand</u>  | Permit No.: F-12-12-12           |

| Length<br>Range | Sı      | pecies |         |         | Spec      | cies |   |
|-----------------|---------|--------|---------|---------|-----------|------|---|
| (mm)            | Rainbow |        | (mm)    |         |           |      |   |
| /               |         |        | 310-319 |         |           |      |   |
|                 |         |        | 320-329 |         |           |      |   |
|                 |         |        | 330-339 |         |           |      |   |
| 50-59           |         |        | 340-349 |         |           |      |   |
| 60-69           |         |        | 350-359 |         |           |      |   |
| 70-79           |         |        | 360-369 |         |           |      |   |
| 80-89           |         |        | 370-379 |         |           |      |   |
| 90-99           |         |        | 380-389 |         |           |      |   |
| 100-109         |         |        | 390-399 |         |           |      |   |
| 110-119         |         |        | 400-409 |         |           |      |   |
| 120-129         |         |        | 410-419 |         | <u>_</u>  |      |   |
| 130-139         |         |        | 420-429 |         |           |      |   |
| 140-149         |         |        | 430-439 |         |           |      |   |
| 150-159         |         |        | 440-449 |         |           |      |   |
| 160-169         |         |        | 450-459 |         |           |      |   |
| 170-179         |         |        | 460-469 |         |           |      |   |
| 180-189         | II      |        | 470-479 |         |           |      | 1 |
| 190-199         | 11      |        | 480-489 |         |           |      |   |
| 200-209         | II      |        | 490-499 |         |           |      | × |
| 210-219         | ī       |        | 500-509 |         |           |      | i |
| 220-229         | II      |        | 510-519 |         |           |      | 1 |
| 230-239         |         |        | 520-529 |         |           |      |   |
| 240-249         |         |        | 530-539 |         |           |      |   |
| 250-259         |         |        | 540-549 |         |           |      | 1 |
| 260-269         |         |        |         |         |           |      |   |
| 270-279         |         |        |         |         |           |      |   |
| 280-289         |         |        | Total   | 10      |           |      |   |
| 290-299         |         |        | Each    | Rainbow |           |      |   |
| 300-309         |         |        | Species | Trout   |           |      |   |
| 200-208         |         |        |         | 1       | aga tabla |      |   |

Density estimates are to be calculated and entered on the front page table.

| Other species sampled/observed:_ | N/A |  |  |  |  | <u> </u> |  |
|----------------------------------|-----|--|--|--|--|----------|--|
|----------------------------------|-----|--|--|--|--|----------|--|

| Permit Number: F-                                                       | 12-12-12                                                                     |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------|--|--|--|--|
| Permit Holder: Gre                                                      | eg Hildebrand                                                                | Affil                                                                        | iation: Hildebrand &                                                                                                     | Associates, LLC                                           |                              |  |  |  |  |
| within the state. A for each transect TRANSECTS ON with the requirement | dditional data is we (site), and the for NTO ONE FORM ents of this form, the | elcomed; however,<br>m(s) returned as<br>EVEN IF IN TH<br>ev will be accepte | fish community or<br>this minimum amore<br>part of the require<br>E SAME STREAN<br>d. Please write legi<br>FOR FUTURE PE | ed report. DO N  1. If your report/d  1. Is your report/d | OT COMBINE ata is compatible |  |  |  |  |
| Stream Name: Big D                                                      | Deer Creek                                                                   | Transect (San                                                                | nple Site) No.: BDC 02                                                                                                   | 2 Collection I                                            | Date: 09-04-12               |  |  |  |  |
| <del></del> _                                                           |                                                                              | OO NOT LE                                                                    | f Proposed Discharge<br>AVE BLANK)                                                                                       |                                                           |                              |  |  |  |  |
| (GPS Co                                                                 | ordinates of lower en                                                        | d of sampling reach                                                          | - Latitude, Longitude                                                                                                    | e, or UTM with zone                                       | e datum)                     |  |  |  |  |
| Estimator (1): Direct                                                   | t observation (Snork<br>ore electrofish passe                                | eling) 🔲 Mark/l                                                              | Recapture Pres                                                                                                           | ence/Absence 🗌                                            |                              |  |  |  |  |
| Transect Length (M<br>(At least one pool/ri                             | ): 100<br>ffle/run complex.)                                                 | Transact Width (l<br>(At least 4 measure                                     | M): 2.5 ements for an average.                                                                                           | )                                                         |                              |  |  |  |  |
| Optional informatio Location: N                                         | on on permanent fish                                                         | barriers:<br>_ Height: <u>N/A</u>                                            | if manmade -                                                                                                             | type: N/A                                                 |                              |  |  |  |  |
| NOTICE OF COLL                                                          | ECTION:                                                                      |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
| IDFG Person Conta                                                       | icted: Tom Curet                                                             | [                                                                            | Date & Time of Conta                                                                                                     | ct: <u>8-31-12: 14:26</u>                                 |                              |  |  |  |  |
| Disposition of Fish:                                                    | Columbia Analytica                                                           | al Services                                                                  |                                                                                                                          |                                                           |                              |  |  |  |  |
| Report densities/CF                                                     | PUE in the table below                                                       | w. Indicate type of                                                          | gear used. Record fisl                                                                                                   | ning effort and age cl                                    | ass by species.              |  |  |  |  |
| Fish Species                                                            | Gear Type Used                                                               | Time Fished                                                                  | #fish/100m² or<br>CPUE                                                                                                   | Age Class (sp<br>No. of 0 year                            | No. of ≥ 1 year              |  |  |  |  |
| Rainbow Trout                                                           | Hook & Line                                                                  | 80 Minutes                                                                   | 10 Fish/Hr                                                                                                               | Zero                                                      | 10                           |  |  |  |  |
|                                                                         |                                                                              |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|                                                                         | ,                                                                            |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|                                                                         |                                                                              |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|                                                                         |                                                                              |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|                                                                         |                                                                              |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|                                                                         |                                                                              |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|                                                                         |                                                                              |                                                                              |                                                                                                                          |                                                           |                              |  |  |  |  |
|                                                                         |                                                                              |                                                                              | The Condens Of the Sec                                                                                                   | TROPICURIC DATA C                                         | JCGT***                      |  |  |  |  |
| ***NUMBERS OF N                                                         | ON-GAME FISH OBSER                                                           | EVATIONS SHOULD B                                                            | E RECORDED ON ELEC                                                                                                       | INOTISHING DATA SI                                        |                              |  |  |  |  |

<sup>1</sup> 

| Stream Name: | Big Deer Creek | Transect (Sample Site) No.: | BDC 01 | Collection Date: <u>09-04-12</u> | _ |
|--------------|----------------|-----------------------------|--------|----------------------------------|---|
|              |                |                             |        |                                  |   |

| Location: Inside Salmon-Challis NF | _ Crew Leader:_ | Greg Hildebrand | Permit No.: F-12-12-12 |
|------------------------------------|-----------------|-----------------|------------------------|
|------------------------------------|-----------------|-----------------|------------------------|

| Length<br>Range |         | Species | Species |               |             |  |     |
|-----------------|---------|---------|---------|---------------|-------------|--|-----|
| (mm)            | Rainbow |         | (mm)    |               |             |  |     |
|                 |         |         | 310-319 |               |             |  | <   |
|                 |         |         | 320-329 |               |             |  | 1/4 |
|                 |         |         | 330-339 |               |             |  |     |
| 50-59           |         |         | 340-349 |               |             |  |     |
| 60-69           |         |         | 350-359 |               |             |  |     |
| 70-79           |         |         | 360-369 |               |             |  |     |
| 80-89           |         |         | 370-379 |               |             |  |     |
| 90-99           |         |         | 380-389 |               |             |  |     |
| 100-109         |         |         | 390-399 |               |             |  |     |
| 110-119         |         |         | 400-409 |               |             |  |     |
| 120-129         |         |         | 410-419 |               |             |  |     |
| 130-139         |         |         | 420-429 |               |             |  |     |
| 140-149         |         |         | 430-439 |               | <del></del> |  |     |
| 150-159         |         |         | 440-449 |               | ·           |  |     |
| 160-169         |         |         | 450-459 |               |             |  |     |
| 170-179         |         |         | 460-469 |               |             |  |     |
| 180-189         | 11      |         | 470-479 |               |             |  |     |
| 190-199         | 11      |         | 480-489 |               | *           |  |     |
| 200-209         | IIII    |         | 490-499 |               |             |  |     |
| 210-219         | II      |         | 500-509 |               |             |  |     |
| 220-229         | 11      |         | 510-519 |               |             |  |     |
| 230-239         | -       |         | 520-529 |               |             |  |     |
| 240-249         |         |         | 530-539 |               |             |  |     |
| 250-259         |         |         | 540-549 |               |             |  |     |
| 260-269         |         |         |         |               |             |  |     |
| 270-279         |         |         |         |               |             |  |     |
| 280-289         |         |         | Total   | 10            |             |  |     |
| 290-299         |         |         | Each    | 10<br>Rainbow |             |  |     |
| 300-309         |         |         | Species | Trout         |             |  |     |

Density estimates are to be calculated and entered on the front page table.

| 0.1 1.1/-baseneds               | 2.27.4 |  |      |   |   |
|---------------------------------|--------|--|------|---|---|
| Other species sampled/observed: | N/A    |  | <br> | · | - |

| Permit Number: F-                                     | 12-12-12                                                                                       |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Permit Holder: Gre                                    | g Hildebrand                                                                                   | Affil                                                                        | iation: Hildebrand &                                                                                                    | z Associates, LLC                                                                       |                                         |  |  |  |  |  |
| for each transect  TRANSECTS ON  with the requirement | dditional data is we (site), and the for TO ONE FORM of this form, the                         | elcomed; however,<br>m(s) returned as<br>EVEN IF IN TH<br>ey will be accepte | fish community or<br>this minimum amor<br>part of the require<br>E SAME STREAN<br>d. Please write legi<br>FOR FUTURE PE | unt of information is ded report. DO No. 1 If your report/dibly. FAILURE TERMIT DENIAL. | OT COMBINE ata is compatible O COMPLETE |  |  |  |  |  |
| Stream Name: <u>Upp</u>                               | Stream Name: Upper Blackbird Creek Transect (Sample Site) No.: UBC Collection Date: 09-05-12   |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
| (GPS Coo                                              | ordinates of lower en<br>45.07'01.50" 114.2<br>t observation (Snorke<br>ore electrofish passes | (DO NOT LE.d of sampling reach 0'47.26" eling) ☐ Mark/l                      | <ul> <li>Latitude, Longitude</li> <li>Recapture ☐ Pres</li> </ul>                                                       |                                                                                         | e datum)                                |  |  |  |  |  |
| Transect Length (M) (At least one pool/ri             | ): 100<br>ffle/run complex.)                                                                   | •                                                                            | M): 2<br>ements for an average                                                                                          | .)                                                                                      |                                         |  |  |  |  |  |
| Optional information Location: N                      | n on permanent fish \<br>/A                                                                    | Height: N/A                                                                  | if manmade -                                                                                                            | type: N/A                                                                               |                                         |  |  |  |  |  |
| NOTICE OF COLL                                        | ECTION:                                                                                        |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
| IDFG Person Conta                                     | cted: Tom Curet                                                                                |                                                                              | Date & Time of Conta                                                                                                    | ct: <u>8-31-12: 14:26</u>                                                               |                                         |  |  |  |  |  |
| Disposition of Fish:                                  | Columbia Analytica                                                                             | I Services                                                                   |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
| Report densities/CP                                   | UE in the table below                                                                          | w. Indicate type of g                                                        | gear used. Record fish                                                                                                  | hing effort and age cl                                                                  | ass by species.                         |  |  |  |  |  |
| Fish Species                                          | Gear Type Used                                                                                 | Time Fished                                                                  | #fish/100m <sup>2</sup> or CPUE                                                                                         | Age Class (sp<br>No. of 0 year                                                          | No. of ≥ 1 year                         |  |  |  |  |  |
| Rainbow Trout x                                       | Hook & Line                                                                                    | 2 Hours                                                                      | 5 Fish/Hr                                                                                                               | Zero                                                                                    | 10                                      |  |  |  |  |  |
| Cutthroat Hybrid                                      |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|                                                       |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|                                                       |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|                                                       |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|                                                       |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|                                                       |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|                                                       |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |
|                                                       |                                                                                                |                                                                              |                                                                                                                         |                                                                                         |                                         |  |  |  |  |  |

<sup>\*\*\*</sup>NUMBERS OF NON-GAME FISH OBSERVATIONS SHOULD BE RECORDED ON ELECTROFISHING DATA SHEET\*\*\*

### Idaho Department of Fish and Game Scientific Collecting Permit Mandatory Report Form

| Stream Name: Upper Blackbird Creek | Transect (Sample Site) No.: UBC     | Collection Date: <u>09-05-12</u> |
|------------------------------------|-------------------------------------|----------------------------------|
|                                    | Constitution Constitution           | Permit No.: F-12-12-12           |
| Location: Inside Salmon-Challis NF | Crew Leader: <u>Greg Hildebrand</u> | remit No.:_ <u>F-1Z-1Z-1Z</u>    |

| Length<br>Range |           | Spec      | cies        |   |         |        | Spec           | cies |  |
|-----------------|-----------|-----------|-------------|---|---------|--------|----------------|------|--|
| (mm)            | Rainbow x | Cutthroat | Hybrid      |   | (mm)    |        |                |      |  |
|                 |           |           |             |   | 310-319 |        |                | -    |  |
|                 |           |           |             |   | 320-329 |        |                |      |  |
|                 |           |           |             |   | 330-339 |        |                |      |  |
| 50-59           |           |           |             |   | 340-349 |        |                |      |  |
| 60-69           |           |           |             |   | 350-359 |        |                |      |  |
| 70-79           |           |           |             |   | 360-369 |        |                |      |  |
| 80-89           |           |           |             |   | 370-379 |        |                |      |  |
| 90-99           |           |           |             | - | 380-389 |        |                |      |  |
| 100-109         |           |           | -           |   | 390-399 |        |                |      |  |
| 110-119         |           |           |             |   | 400-409 |        |                |      |  |
| 120-129         |           |           | <del></del> |   | 410-419 |        |                |      |  |
| 130-139         |           |           |             |   | 420-429 |        |                |      |  |
| 140-149         |           |           |             |   | 430-439 |        |                |      |  |
| 150-159         |           |           |             |   | 440-449 |        |                |      |  |
| 160-169         |           |           |             |   | 450-459 |        |                |      |  |
| 170-179         |           |           |             |   | 460-469 |        |                |      |  |
| 180-189         | I I       |           | <u> </u>    |   | 470-479 |        | - <del>-</del> |      |  |
| 190-199         | 11        |           |             |   | 480-489 |        |                |      |  |
| 200-209         | I         |           |             |   | 490-499 |        |                |      |  |
| 210-219         | IIII      |           |             |   | 500-509 |        |                |      |  |
| 220-229         | I         |           |             |   | 510-519 |        |                |      |  |
| 230-239         |           |           |             |   | 520-529 |        |                |      |  |
| 240-249         |           |           |             |   | 530-539 |        |                |      |  |
| 250-259         |           |           |             |   | 540-549 |        |                |      |  |
| 260-269         |           |           |             |   |         |        |                |      |  |
| 270-279         |           |           |             |   |         |        |                |      |  |
| 280-289         |           |           |             |   | Total   | 10     |                | Ì    |  |
| 290-299         |           |           |             |   | Each    |        | Cutthroat      |      |  |
| 300-309         |           |           |             |   | Species | Hybrid |                |      |  |

Density estimates are to be calculated and entered on the front page table.

| Other species sar  | npled/observed:_ | N/A  |       | <br> |  |
|--------------------|------------------|------|-------|------|--|
| Ottor observe per- |                  | 13/1 | <br>- |      |  |

## **APPENDIX C**

FISH SPECIES COLLECTION FORMS

Idaho Cobalt Project - Fish Tissue Collection Log

Collection Method: Rod and Reel Weather: Sunny

|                      | 1                              | C(2) Co-2  |                       | 10:00                         |       | 00;05                          |        | 50.00                          |       | 50:0°                          |       | 0.00                                    | 20.00      |          | 20:00                          |       | 60:00                          |       | සිට : අන                       |       | 00.09                          |       |
|----------------------|--------------------------------|------------|-----------------------|-------------------------------|-------|--------------------------------|--------|--------------------------------|-------|--------------------------------|-------|-----------------------------------------|------------|----------|--------------------------------|-------|--------------------------------|-------|--------------------------------|-------|--------------------------------|-------|
| Location Description | Downstream of Proposed Outfall |            | To the of Description | Downstream of Froposed Outlan |       | Downstream of Proposed Outtall | 11 0 0 | Downstream of Proposed Outfall |       | Downstream of Proposed Outfall |       | Downstream of Proposed Outfall          |            | 10.46.11 | Downstream of Proposed Outrain |       | Downstream of Proposed Outfall |       | Downstream of Proposed Outfall |       | Downstream of Proposed Outfall |       |
| Length (mm)          | (mim)                          | 250        | 7,77                  |                               | 182   |                                | 199    |                                | 190   |                                | 219   |                                         | 225        | 777      |                                | 204   |                                | 228   |                                | 207   |                                | 184   |
| Fish                 | Deinbow                        | Tront      | TIOUL                 | Rainbow                       | trout | Rainbow                        | Trout  | Rainbow                        | Trout | Rainbow                        | Trout | Rainhow                                 | Tront      | Lrout    | Rainbow                        | Trout | Rainbow                        | Trout | Rainbow                        | Trout | Rainbow                        | Trout |
| Fish                 |                                | BDC-01-01  |                       | BDC-01-02                     |       | BDC-01-03                      |        | BDC-01-04                      |       | BDC-01-05                      |       | BDC_01_06                               | 20-10-077  |          | BDC-01-07                      |       | BDC-01-08                      |       | BDC-01-09                      |       | BDC-01-10                      |       |
| Stream               | Name                           | Big Deer   | Creek                 | Big Deer                      | Creek | Big Deer                       | Creek  | Big Deer                       | Creek | Big Deer                       | Creek | Die Deer                                | 1377 BIG   | Creek    | Big Deer                       | Creek | Big Deer                       | Creek | Big Deer                       | Creek | Big Deer                       | Creek |
| Date                 |                                | 09-04-2012 |                       | 09-04-2012                    |       | 09-04-2012                     |        | 09-04-2012                     |       | 09-04-2012                     |       | 000000000000000000000000000000000000000 | 09-04-2012 |          | 09-04-2012                     |       | 09-04-2012                     |       | 09-04-2012                     |       | 09-04-2012                     |       |
| Sampler              |                                | Hildebrand |                       | Chadwick                      |       | Wilkins                        |        | .1                             |       |                                |       |                                         |            |          |                                | 60    |                                |       |                                |       |                                |       |

Idaho Cobalt Project - Fish Tissue Collection Log

Collection Method: Rod and Reel Weather: Sunny

|   | Location Description | 21 0. < 3 | Upstream of Proposed Outfall |           | Upstream of Proposed Outfall | 10, 01    | Upstream of Proposed Outfall | 11 3, 41  | Upstream of Proposed Outfall |           | Upstream of Proposed Outfall |           | Upstream of Proposed Outfall |            | Tractream of Proposed Outfall | Opsileani of Loposed Curan | 10.161    | Upstream of Proposed Outrall |           | Upstream of Proposed Outfall | = 0.00    | Upstream of Proposed Outfall |           |
|---|----------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|------------|-------------------------------|----------------------------|-----------|------------------------------|-----------|------------------------------|-----------|------------------------------|-----------|
|   | Length               | (mm)      |                              | 210       |                              | 208       |                              | 203       |                              | 206       |                              | 181       |                              | 216        |                               | 4                          | 209       |                              | 190       |                              | 194       |                              | 182       |
|   | Fish                 | Species   | Rainbow                      | Trout      | 11001                         | Rainbow                    | Trout     | Rainbow                      | Trout     | Rainbow                      | Trout     | Rainbow                      | Trout     |
| S | Fish                 | Д         |                              | BDC-02-01 |                              | BDC-02-02 |                              | BDC-02-03 |                              | BDC-02-04 |                              | BDC-02-05 |                              | 90-CU-JUB  | DDC-07-00                     |                            | BDC-02-07 |                              | BDC-02-08 |                              | BDC-02-09 |                              | BDC-02-10 |
|   | Stream               | Name      | Big Deer                     | Creek     | Big Deer                     | Jest C     | Creek                         | Big Deer                   | Creek     | Big Deer                     | Creek     | Big Deer                     | Creek     | Big Deer                     | Creek     |
|   | Date                 |           | 09-04-2012                   |           | 09-04-2012                   |           | 09-04-2012                   |           | 09-04-2012                   |           | 09-04-2012                   | 1         | 00 04 2012                   | 03-04-5015 |                               | 09-04-2012                 |           | 09-04-2012                   |           | 09-04-2012                   |           | 09-04-2012                   |           |
|   | Sampler              |           | Hildebrand                   |           | Chadwick                     |           | Wilkins                      |           |                              |           |                              |           |                              |            |                               |                            |           | •                            |           |                              |           |                              |           |

Idaho Cobalt Project - Fish Tissue Collection Log

Collection Method: Rod and Reel Weather: Sunny

| Sampler    | Date        | Stream Name     | Fish   | Fish        | Length | Location Description |
|------------|-------------|-----------------|--------|-------------|--------|----------------------|
| 4          |             |                 | E      | Species     | (mm)   |                      |
| Hildebrand | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        |                      |
|            |             | Creek           | UBC-01 | Cutthroat X | 221    | Freshwater Fish Pond |
| Chadwick   | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        | # 1                  |
|            |             | Creek           | UBC-05 | Cutthroat X | 199    | Freshwater Fish Pond |
| Wilkins    | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        |                      |
|            |             | Creek           | UBC-03 | Cutthroat X | 215    | Freshwater Fish Pond |
|            | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        |                      |
|            |             | Creek           | UBC-04 | Cutthroat X | 218    | Freshwater Fish Pond |
|            | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        |                      |
|            |             | Creek           | UBC-05 | Cutthroat X | 210    | Freshwater Fish Pond |
|            | 09-05-2012  | Upper Blackbird | \w_    | Rainbow-    |        |                      |
|            |             | Creek           | UBC-06 | Cutthroat X | 192    | Freshwater Fish Pond |
|            | 09-045-2012 | Upper Blackbird |        | Rainbow-    |        |                      |
|            |             | Creek           | UBC-07 | Cutthroat X | 214    | Freshwater Fish Pond |
|            | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        |                      |
|            |             | Creek           | UBC-08 | Cutthroat X | 184    | Freshwater Fish Pond |
|            | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        |                      |
|            |             | Creek           | UBC-09 | Cutthroat X | 207    | Freshwater Fish Pond |
|            |             |                 |        |             |        |                      |
|            | 09-05-2012  | Upper Blackbird |        | Rainbow-    |        | 1                    |
|            |             | Creek           | UBC-10 | Cutthroat X | 185    | Freshwater Fish Pond |

FORMATION CAPITAL CORPORATION, U.S.
IDAHO COBALT PROJECT
NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

## APPENDIX D

CHAIN OF CUSTODY FORMS

|   | =   |
|---|-----|
|   | 11  |
|   | C   |
|   | 0   |
|   | E   |
|   | č   |
|   | į   |
|   | Ē   |
|   | i i |
| 1 | 0   |
| 1 | V   |
| M | 4   |
| 4 |     |
|   |     |

# OF CUSTODY

SR#

(CIRCLE ONE) (Total Metals: [An] (As Sb Ba Be B Ca (A) (Cin) Cr Cu Fe (Pip) Mri (Mri) Mo (Ni) K Ag Na (Se) Sr (TI) Sn V (Zn) [Hg Above circles METALS. SAMPLES WILL BE RAN FOR TOTAL MERCURY AND WILL BE REMARKS IF MEHAL MERCUKI HASTOBE SPECIAL INSTRUCTIONS/COMMENTS: EACH TISS WE SMAYILE WILL BE ANALYZED FOR THE MPRCURY CONCENTRATIONS Š. \*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: AL Ba Be B Ca Cd Co Or Cu Fe Pb Mg Mn Mo Ni K Ag Na ONLY ANKYZED FLE MEHATILMERCURY FF PLAN My ty CCINTACT FIRES OF O'S MG 1317 South 13th Ave., Kelso, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636 1068 (lax) Circle which metals are to be analyzed: PLRASE WITHEN 30% Dissolved Metals: Al As Sb Service Ovatile Organics by GC/MS COMPS CO Anabarzer) NUMBER OF CONTAINERS 1. Ides RAMIS . ASSOCIATES IIC TURNAROUND REQUIREMENTS 4623 E DUSTABLUSCT Standard (15 working days) INVOICE INFORMATION 15 II 方任 TISK. 48 hr. MATRIX IST. P.T. FILL. 15th FIS. AC 17 FISK Baise In 83711 Provide FA''. Results 100 JA 100 Buil 20C 01-01 01-01 P.O. # 334/4 LAB I.D. MAIL MENUES GREG ANTELNE PRAMI & GMATL OF C. DRC COMPANY NAME HILDERS RAND & ASSOCIATE HILDE BARNI 24 hr. Bill To: 1415 TIME 330 2012 DEGASAS COSKT 8/1/B カイプか 4/2 CIMIB 0/2/ C1/h/b 21/1/2 0/4/6 STATE OF THE Report Dup., MS, MSD as Molecham Routine Report: Method 101-S19 REPORT REQUIREMENTS IV. Data Validation Report Blank, Surrogate, as CLP Like Summary GREG HINAHO 4633 E G-101 (no raw data) -01-03 300-01-10 10-10-10-10-30-10-06 10-12-XX といしい required 30C-c1-07 required 3x -c1-0 V. EDD 3 =

Copyright 2012 by ALS Group

Date/Time

Signature

Date/Time

Firm

Printed Name

Signature

Date/Ti

Frinted Name

Firm ASSOCI ATPS

Sighature Date/Time ARAND HALDERSKINN) OF Prinked Name Firm ASSACE AND

bry Wildeliano 9/10/12

RELINQUISHED BY:

RECEIVED BY:

Requested Report Date

Firm

Printed Name

RECEIVED BY:

Sample Shipment contains USDA regulated soil samples (check box if applicable)

RELINQUISHED BY:

CHAIN OF CUSTODY

(CIRCLE ONE) TOTAL MERCURY AND WALL BE (Zn/Hg) WILL BO ANNIZED FOR THE WG WIVE IF METHIL MERCUKY MAS REMARKS MERCURY CONCENTRATIONS Date/Time Sn V Sn RECEIVED BY: (Se)Sr(TJ) NORTHWEST OTHER: △ RSK 175 (Methane (CO2) Pb Mg Mn Mo Ní K Ag Na Cr Cu Fe (Pb) Mg (Min) Mo(Ni) K Ag Na Printed Name Sample Shipment contains USDA regulated soil samples (check box if applicable) Signature 1613 O RAN FER SPECIAL INSTRUCTIONS/COMMENTS: EXH TYSSUE SAMPILE 15:12 "INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI THES! PAGE Date/Time :008 'Ha RELINQUISHED BY: Cu Fe Above circleis METALS , SAMPLES Will be 20% OF O.3 Mg FAL METHILMERCURT Ö Ва Ве В Са (Сd)/Сd 1317 South 13th Ave., Kelso, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636.1068 (lax) Be B Ca Cd Drintod Nomo Signature Circle which metals are to be analyzed: Cas Dieseld (\*See below) to be ANASYZED Ва Sp Tetal Metals: (As Sb ONLY ANALIZED RE WITHEN Semivolatile Organics by GC/MS

8250 82700 82700 GC/MS

DHAP MIS

DHAP MIS

Semivolatile Organics by GC/MS Dissolved Metals: Al As RECEIVED BY: NUMBER OF CONTAINERS HildeSpanni ASSOCIATESIIC TURNAROUND REQUIREMENTS P.O. # 23-14] Standard (15 working days) INVOICE INFORMATION Requested Report Date B GMRTL: tem 48 hr. ラリ 不以 NS.H PPO. JECT MATRIX FIST. List FIST TY. Provide FAX Results BRAND & ASSOCIATES 09-10 09-10 856 856 856 いから 500 TO (2 60 802-63 802-63 802-63 LAB I.D. P Buise ID 8374 24 hr. WILLIAMAIN 1330 8 TIME DeGASMS COBALT GREGAHING GRAND Hildeline Hildeline 09/9/13 RELIMOUISHED BY: 4 0/1/0 0/1/6 5/4/6 5/2/6 II. Report Dup., MS, MSD as ウ/ケ/タ 0/4/6 9/7/3 STAN STAN 42% 1. Routine Report: Method DATE REPORT REQUIREMENTS Data Validation Report Blank, Surrogate, as CLP Like Summary TOM (ALS) Environmental 1 200 C-ERT WITHLANN) K STO 60-(no raw data) 12/6/ ADC-62-05 BNC-63-63 BDC-CB-COL BDC-03-08 2-60-80x -3-06 BK-62-07 BDC-03-03 required required BDC-09 63 EDD SAMPL PROJECT MANAGER PHONE # 208 PHOJECT NUMBER E-MAIL ADDRESS き > = ADDRESS

ALS) Environmental

# CHAIN OF CUSTODY

1317 South 13th Ave., Kelsu, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636.1068 (tax)

SR SR S.7222 | 360.636.1068 (fax) PAGE | OF L

(CIRCLE ONE) HAS 72 52 (Se) Sr(TI) Sn v (Zn) Hg REMARKS HEVE CIRCLED METHS . SAMPLES WILL BE RAIN FIR TATAL MERCURY AND WILL be ONLY TISSUE SAMPLE WILL BE ANALYZED FER THE TETAL MERCURY CONCENTRATIONS RECEIVED BY: IF MeHHILMERCURY \*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: A Cr Cu Fe (Pb/ Mg (Mn/ Mo(Ni) K Ag Na K Ag Na Sample Shipment contains USDA regulated soil samples (check box if applicable) \$ 5. E. E. E. 1008 14d E. RELINQUISHED BY: O Č ANTHEN JOB OF O'S MY/ ANTHEN ACON CUNTRIT FIRST FER METHYLMERCURY 000 Cq Cq SPECIAL INSTRUCTIONS/COMMENTS. EAU Pesticides/Herbi В Ca Ω Be Be Circle which metals are to be analyzed: Sas ( ) Siesei ( ) Sie Ва Ва Total Metals: (Al (As) Sb Semivolatile Organics by GO/MS

Semivolatile Organics by GO/MS As Dissolved Metals: Al ANALYZeis RECEIVED BY NUMBER OF CONTAINERS DEGASASCT TURNAROUND REQUIREMENTS HIDDESPEND - ASSOCIATES ILC BOAND & GMAILILLIN Standard (15 working days) INVOICE INFORMATION FIS! FIST THE THE EST. 西山 TST. TY. Requested Report Date 182-05 [IS] WAS 10 FEST P. ASSOCIATES Provide FAX Results WBC-43 MBC-64 MBC of 10-XM Bill To: 4633 巨 UBC-08 MBC-09 UBC-CA) LABI.D. MBC-CI PO.# 2344 HILLINGSRAND 537 24 hr. 5 day 0.0 Bise 3 TIME DEGABUS 3 9/S/B 1HB 9/S/B 9/2/19 9/5/B <u>₹</u> ILDEARAND 9/2/B 9/13 01/5/6 0 RELINQUISHED BY: Report Dup., MS, MSD as Routine Report: Method REPORT REQUIREMENTS IV. Data Validation Report Blank, Surrogate, as III. CLP Like Summary HJAHO STO GREGA G P. C. (no raw data) 1/36-08 1/3c-03 0,0 13c-28 60-WBC - 0 Y ري 50 required required 1 7 EDD PROJECT NUMBER -MAIL ADDRESS COMPANY NAME 4,86. NB. BC BR 0 3 <u>=</u>: > 3 ADDRESS

Printed Name Firm Copyright 2012 by ALS Group

Date/Time

Signature

Date/Time

Signature

Firm

Printed Name

Firm

Printed Name

Firm A SSGC MPRS/IC

Bate/Time

(de LOCAM)

phature

ALYSTS INC

7

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon |                  | TO AND THE PARTY OF THE PARTY O |                  |                                                                                 |                                                                               |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EcoAnalysis Project#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 社                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |                                                                               |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | Hildebrand & Associates, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sociates, LLC    |                                                                                 |                                                                               |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total # of Samples this project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | his project.     | 3 Total (T1, T2 & T3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13)              |                                                                                 |                                                                               |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # of Samples Shipped this shipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d this shipment. | 3 Total (T1, T2 & T3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T3)              |                                                                                 |                                                                               |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                |                                                                                 |                                                                               |
| Containers             | Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Site #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rep              | Device Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dimensions       | Habitat                                                                         | Collection Date                                                               |
| 100                    | Big Deer Ofeek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Big Deer Oreek 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.7              | Hess Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13" x 36" 500 µm | स् सिक                                                                          | 9/4/2012                                                                      |
|                        | Bo Deer Oreak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bro Deer Creek 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L-1              | Hess Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13" x 16" 500 µm | Riffle                                                                          | 9/4/2012                                                                      |
| - Cap                  | Sig Deer Cleek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sig Deer Creek 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (P)              | Hess Sample:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13"× 16" 500 µm  | _                                                                               | 9/4/2012                                                                      |
| Relinquished Byl Date. | Mari H. Tolah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40/60 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 913013           | Condition; Scot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r. Good          |                                                                                 |                                                                               |
| Company:               | milenpland & Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |                                                                               |
| Received Bys Date:     | - Cras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/12 2012        | Condinor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Condition: Good  |                                                                                 |                                                                               |
| Company:               | NO VICTORIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | वादो                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |                                                                               |
| Refinquished By! Date. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTRACTOR OF THE PERSON NAMED IN CONT |                  | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                                 |                                                                               |
| Company:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |                                                                               |
| Received By/ Date:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Constition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | dia mindri maning tanga paga paga masabada dak di adid di didapp pipuli disersi | PREJAMENTALISTA AND VALORISTA PARTICIPATO PRESTATION PROPRIETO PROVINCIONISTA |
| Company:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |                                                                               |
| Relinquished By: Date: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.               |                                                                                 |                                                                               |
| Company:               | me i inde de deste e insperimente constitución en establisha de senda de la Petrol de definida de definida establisha en establisha de deste en establisha de definida de definida establisha en establisha de deste en establisha de deste en establisha de de deste en establisha de de deste en establisha de deste en establi | annessen eigen er der erfer erfer des eigen eine de des des des des des des des des des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |                                                                               |
| Received By: Date      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                                 |                                                                               |
| Company:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |                                                                               |

FORMATION CAPITAL CORPORATION, U.S.
IDAHO COBALT PROJECT
NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

## **APPENDIX E**

MACROINVERTEBRATE RESULTS

Hildebrand Idaho Cobalt ID BURP Benthos 2012 Dry Weights

ANALYSTS INC.
University of Idaho Analytical Sciences Laboratory

Units: grams Reporting Limit: 0.001

| EcoA      |                   |     |              |                    |                     | Sample       | Analysis    |          |
|-----------|-------------------|-----|--------------|--------------------|---------------------|--------------|-------------|----------|
| Sample ID | Site ID           | Rep | Collect Date | Matrix             | Parameter           | Weight - Dry | Method      | ASL ID   |
| 6147.1-1  | Big Deer Creek 01 | T1  | 04-Sep-12    | Solid - Wet Weight | Sample Weight - Dry | 0.055        | Gravimetric | E1202817 |
| 6147.1-2  | Big Deer Creek 01 | T2  | 04-Sep-12    | Solid - Wet Weight | Sample Weight - Dry | 0.157        | Gravimetric | E1202818 |
| 6147.1-3  | Big Deer Creek 01 | T3  | 04-Sep-12    | Solid - Wet Weight | Sample Weight - Dry | 0.118        | Gravimetric | E1202819 |
|           |                   |     |              |                    |                     |              |             |          |

Hildebrand Idaho Cobalt ID BURP Benthos 2012 Sort Report

Eco Analysts, inc.

|          |                |                   |     |            |              |           |           | Estimated  | Estimated  |             |          |            |            |            |
|----------|----------------|-------------------|-----|------------|--------------|-----------|-----------|------------|------------|-------------|----------|------------|------------|------------|
| EcoA     |                |                   |     | Collection |              |           | Primary   | Pre-Rinse  | Post-Rinse |             |          | Estimated  | Estimated  | Estimated  |
| Sample   | D Stream       | Site ID           | Rep | Date       | Sorter       | Sort Date | Matrix    | Volume (L) | Volume (L) | QC Sorter   | QC Date  | %Recovery1 | %Recovery2 | %Recovery3 |
| 6147.1-1 | Big Deer Creek | Big Deer Creek 01 | T1  | 09/04/12   | Susie Patton | 09/28/12  | Inorganic | 0.16       | 0.06       | Megan Payne | 09/28/12 | 100.00     | N/A        | N/A        |
| 6147.1-2 | Big Deer Creek | Big Deer Creek 01 | T2  | 09/04/12   | Susie Patton | 09/28/12  | Inorganic | 0.15       | 0.10       | Megan Payne | 09/28/12 | 100.00     | N/A        | N/A        |
| 6147.1-3 | Big Deer Creek | Big Deer Creek 01 | T3  | 09/04/12   | Susie Patton | 09/28/12  | Inorganic | 0.05       | 0.05       | Megan Payne | 09/28/12 | 100.00     | N/A        | N/A        |

Hildebrand Idaho Cobalt ID BURP Benthos 2012
\*Data are adjusted for subsampling\*
\*\*Calculations use EcoAnalysts standard attributes

ECOANALYSTS, INC.

|                                                                  | Site ID<br>Rep<br>Collection Date | 09-04-2012<br>Hess Sampler<br>100.00 | Big Deer Creek<br>Big Deer Creek 01<br>T2<br>09-04-2012<br>Hess Sampler<br>100.00<br>6147.1-2 | Big Deer Creek<br>Big Deer Creek 01<br>T3<br>09-04-2012<br>Hess Sampler<br>100.00<br>6147.1-3 |
|------------------------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Abundance Measures<br>Corrected Abundance                        |                                   | 228.00                               | 447.00                                                                                        | 500.00                                                                                        |
| EPT Abundance                                                    |                                   | 128.00                               | 253.00                                                                                        | 240.00                                                                                        |
| Dominance Measures<br>Dominant Taxon                             |                                   | Heterlimnius sp.                     | Zapada cinctipes                                                                              | Heterlimnius sp.                                                                              |
| Dominant Abundance                                               |                                   | 34.00                                | 86.00                                                                                         | 123.00                                                                                        |
| 2nd Dominant Taxon 2nd Dominant Abundance                        |                                   | Zapada cinctipes<br>17.00            | Heterlimnius sp.<br>33.00                                                                     | Zapada cinctipes<br>41.00                                                                     |
| 3rd Dominant Taxon                                               |                                   | Taeniopterygidae                     | Cinygmula sp.                                                                                 | Cinygmula sp.                                                                                 |
| 3rd Dominant Abundance<br>% Dominant Taxon                       |                                   | 16.00<br>14.91                       | 25.00<br>19.24                                                                                | 35.00<br>24.60                                                                                |
| % 2 Dominant Taxa<br>% 3 Dominant Taxa                           |                                   | 22.37<br>29.39                       | 26.62<br>32.21                                                                                | 32.80<br>39.80                                                                                |
| Richness Measures                                                |                                   |                                      |                                                                                               |                                                                                               |
| Species Richness                                                 |                                   | 42.00                                | 54.00                                                                                         | 50.00                                                                                         |
| EPT Richness<br>Ephemeroptera Richness                           |                                   | 20.00<br>7.00                        | 29.00<br>11.00                                                                                | 26.00<br>11.00                                                                                |
| Plecoptera Richness                                              |                                   | 7.00                                 | 8.00                                                                                          | 8.00                                                                                          |
| Trichoptera Richness<br>Chironomidae Richness                    |                                   | 6.00<br>9.00                         | 10.00<br>11.00                                                                                | 7.00<br>12.00                                                                                 |
| Oligochaeta Richness                                             |                                   | 0.00<br>33.00                        | 0.00                                                                                          | 0.00                                                                                          |
| Non-Chiro. Non-Olig. Richness<br>Rhyacophila Richness            |                                   | 33.00<br>2.00                        | 43.00<br>3.00                                                                                 | 38.00<br>3.00                                                                                 |
| Community Composition                                            |                                   |                                      |                                                                                               |                                                                                               |
| % Ephemeroptera<br>% Plecoptera                                  |                                   | 23.25<br>25.00                       | 17.23<br>28.41                                                                                | 27.80<br>16.00                                                                                |
| % Trichoptera                                                    |                                   | 7.89                                 | 10.96                                                                                         | 4.20                                                                                          |
| % EPT<br>% Coleoptera                                            |                                   | 56.14<br>19.74                       | 56.60<br>10.51                                                                                | 48.00<br>29.20                                                                                |
| % Diptera                                                        |                                   | 11.84                                | 21.25                                                                                         | 11.00                                                                                         |
| % Oligochaeta<br>% Baetidae                                      |                                   | 0.00<br>4.39                         | 0.00<br>2.68                                                                                  | 0.00<br>3.60                                                                                  |
| % Brachycentridae                                                |                                   | 2.63                                 | 3.36                                                                                          | 1.00                                                                                          |
| % Chironomidae<br>% Ephemerellidae                               |                                   | 10.53<br>6.58                        | 19.91<br>5.59                                                                                 | 10.20<br>11.40                                                                                |
| % Hydropsychidae                                                 |                                   | 0.44                                 | 0.22                                                                                          | 0.40                                                                                          |
| % Odonata                                                        |                                   | 0.00                                 | 0.00                                                                                          | 0.00                                                                                          |
| % Perlidae<br>% Pteronarcyidae                                   |                                   | 2.63<br>0.00                         | 2.01<br>0.00                                                                                  | 0.60<br>0.00                                                                                  |
| % Simuliidae                                                     |                                   | 0.00                                 | 0.00                                                                                          | 0.00                                                                                          |
| Functional Group Composition % Filterers                         | n                                 | 2.19                                 | 4.70                                                                                          | 1.00                                                                                          |
| % Gatherers                                                      |                                   | 32.46                                | 34.90                                                                                         | 45.20                                                                                         |
| % Predators<br>% Scrapers                                        |                                   | 23.68<br>18.86                       | 19.02<br>11.63                                                                                | 17.80<br>19.20                                                                                |
| % Shredders                                                      |                                   | 16.67                                | 25.73                                                                                         | 10.00                                                                                         |
| % Piercer-Herbivores<br>% Unclassified                           |                                   | 0.00<br>0.00                         | 0.00<br>0.22                                                                                  | 0.00                                                                                          |
| Filterer Richness                                                |                                   | 2.00                                 | 3.00                                                                                          | 1.00                                                                                          |
| Gatherer Richness<br>Predator Richness                           |                                   | 13.00<br>13.00                       | 19.00<br>16.00                                                                                | 18.00<br>18.00                                                                                |
| Scraper Richness                                                 |                                   | 7.00                                 | 7.00                                                                                          | 8.00                                                                                          |
| Shredder Richness<br>Piercer-Herbivore Richness                  |                                   | 5.00<br>0.00                         | 7.00<br>0.00                                                                                  | 4.00<br>0.00                                                                                  |
| Unclassified                                                     |                                   | 0.00                                 | 1.00                                                                                          | 0.00                                                                                          |
| Diversity/Evenness Measures                                      |                                   |                                      | 4.44                                                                                          | 4.22                                                                                          |
| Shannon-Weaver H' (log 10)<br>Shannon-Weaver H' (log 2)          |                                   | 1.41<br>4.69                         | 1.44<br>4.79                                                                                  | 1.33<br>4.42                                                                                  |
| Shannon-Weaver H' (log e)                                        |                                   | 3.25                                 | 3.32                                                                                          | 3.07                                                                                          |
| Margalef's Richness<br>Pielou's J'                               |                                   | 7.55<br>0.87                         | 8.68<br>0.83                                                                                  | 7.88<br>0.78                                                                                  |
| Simpson's Heterogeneity                                          |                                   | 0.95                                 | 0.94                                                                                          | 0.91                                                                                          |
| Biotic Indices<br>% Indiv. w/ HBI Value                          | , i                               | 94.74                                | 94.41                                                                                         | 92.40                                                                                         |
| Hilsenhoff Biotic Index                                          |                                   | 2.81                                 | 3.19                                                                                          | 3.13                                                                                          |
| % Indiv. w/ MTI Value<br>Metals Tolerance Index                  |                                   | 67.11                                | 76.51                                                                                         | 74.20<br>2.51                                                                                 |
| % Indiv. w/ FSBI Value                                           |                                   | 2.57<br>67.98                        | 2.58<br>62.42                                                                                 | 73.80                                                                                         |
| Fine Sediment Biotic Index<br>FSBI - average                     |                                   | 120.00<br>2.86                       | 153.00                                                                                        | 144.00<br>2.88                                                                                |
| FSBI - weighted average                                          |                                   | 5.21                                 | 2.83<br>4.70                                                                                  | 5.07                                                                                          |
| % Indiv. w/ TPM Value                                            |                                   | 78.95                                | 69.80                                                                                         | 78.00                                                                                         |
| Temp. Pref. Metric - average<br>TPM - weighted average           | - ]                               | 4.50<br>6.77                         | 4.30<br>6.03                                                                                  | 4.36<br>6.60                                                                                  |
| Karr BIBI Metrics                                                |                                   |                                      |                                                                                               |                                                                                               |
| Long-Lived Taxa Richness<br>Clinger Richness                     | ļ                                 | 10.00<br>22.00                       | 10.00<br>28.00                                                                                | 7.00<br>26.00                                                                                 |
| % Clingers                                                       |                                   | 73.25                                | 67.34                                                                                         | 77.60                                                                                         |
| ntolerant Taxa Richness                                          |                                   | 19.00                                | 26.00                                                                                         | 22.00                                                                                         |
|                                                                  | I                                 | 2 31                                 | 3 32                                                                                          | 3.03                                                                                          |
| % Tolerant Individuals<br>% Tolerant Taxa<br>Coleoptera Richness |                                   | 2.31<br>4.76<br>4.00                 | 3.32<br>3.70<br>4.00                                                                          | 3.03<br>4.00<br>3.00                                                                          |

Hildebrand Idaho Cobalt ID BURP Benthos 2012
\*Data are NOT adjusted for subsampling\*
\*\*Idaho Basins SMI calculations located below TOTAL\*\*

Eco Analysts, Inc.

|                              | Strean<br>Site IC<br>Rep<br>Collection Date<br>Device<br>Percent Subsample<br>EcoAnalysts Sample IC | Big Deer Creek 0<br>T<br>09-04-201;<br>Hess Sample<br>1 100.00 | 1 Big Deer Creek 01<br>1 T2<br>2 09-04-2012<br>r Hess Sampler<br>0 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Big Deer Cree<br>Big Deer Creek 0<br>T.<br>09-04-201<br>Hess Sample<br>100.0<br>6147.1- |
|------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Ephemeroptera                | Acentrella turbida                                                                                  | 0                                                              | - Albara - A | 1                                                                                       |
|                              | Baetis tricaudatus                                                                                  | 10                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                      |
|                              | Caudatella hystrix                                                                                  | 0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                       |
|                              | Cinygmula sp.                                                                                       | 4                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                      |
|                              | Drunella coloradensis/flavilinea Drunella doddsii                                                   | 13                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                      |
|                              | Epeorus deceptivus/hesperus                                                                         | 3                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                       |
|                              | Epeorus grandis/permagnus                                                                           | 7                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                       |
|                              | Ephemerella sp.                                                                                     | 0                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                      |
|                              | Leptophlebiidae                                                                                     | 0 14                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                       |
|                              | Rhithrogena sp.<br>Serratella tibialis                                                              | 14                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>1                                                                                 |
| Plecoptera                   | Chloroperlidae                                                                                      | o o                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                       |
| stoneflies                   | Doroneuria sp.                                                                                      | 6                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                       |
|                              | Megarcys sp.                                                                                        | 2                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                       |
|                              | Paraperla sp. Perlodidae                                                                            | 0 2                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4                                                                                     |
|                              | Sweltsa sp.                                                                                         | 12                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                      |
|                              | Taeniopterygidae                                                                                    | 16                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                       |
|                              | Zapada cinctipes                                                                                    | 17                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                                                                                      |
| Coleoptera                   | Zapada columbiana<br>Heterlimnius sp.                                                               | 2 34                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                       |
|                              | Lara sp.                                                                                            | 1                                                              | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123                                                                                     |
|                              | Narpus sp.                                                                                          | , o                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                       |
|                              | Optioservus sp.                                                                                     | 9                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                      |
| Diptera-Chironomidae         | Zaitzevia sp.                                                                                       | 1                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                       |
| nonbiting midges             |                                                                                                     | 0 0                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                       |
|                              | Eukiefferiella gracei gr.                                                                           | 3                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                       |
|                              | Eukiefferiella tirolensis                                                                           | 0                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
|                              | Micropsectra sp.                                                                                    | 6                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                      |
|                              | Orthocladiinae<br>Orthocladius (Euortho.) rivulorum                                                 | 0 0                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0                                                                                     |
|                              | Orthocladius (Euorthocladius) sp.                                                                   | 1                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                       |
|                              | Orthocladius Complex                                                                                | 2                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                       |
|                              | Orthocladius sp.                                                                                    | 3                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                       |
|                              | Potthastia gaedii gr.                                                                               | 4                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                      |
|                              | Rheocricotopus sp. Thienemanniella sp.                                                              | 1 1                                                            | 19<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                       |
|                              | Tvetenia bavarica gr.                                                                               | 3                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                       |
|                              | Bezzia/Palpomyia sp.                                                                                | 2                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                       |
| flies                        | Dicranota sp.                                                                                       | 0                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                       |
|                              | Pericoma/Telmatoscopus sp. Rhabdomastix fascigera gr.                                               | 0                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
| Trichoptera                  | Amiocentrus aspilus                                                                                 | Ö                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
| caddisflies                  | Arctopsyche grandis                                                                                 | 1                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
|                              | Brachycentrus americanus                                                                            | 4                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                       |
|                              | Dolophilodes sp.<br>Glossosoma sp.                                                                  | 0 4                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
|                              | Lepidostoma sp.                                                                                     | 0                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
|                              | Micrasema sp.                                                                                       | 2                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
|                              | Neophylax sp.                                                                                       | 0                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                       |
|                              | Parapsyche elsis<br>Rhyacophila betteni gr.                                                         | 0                                                              | 0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                       |
|                              | Rhyacophila brunnea gr.                                                                             | 6                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                       |
|                              | Rhyacophila sp.                                                                                     | 0                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                       |
|                              | Rhyacophila vagrita gr.                                                                             | 1                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
| Acari<br>water mites         | Atractides sp.                                                                                      | 1                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                       |
|                              | Protzia sp.                                                                                         | 4                                                              | 5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15<br>2                                                                                 |
|                              | Sperchon sp.                                                                                        | 2                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                       |
|                              | Stygothrombium sp.                                                                                  | 0                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       |
|                              | Torrenticola sp.                                                                                    | 2                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                       |
| Crustacea<br>Other Organisms |                                                                                                     | 5<br>13                                                        | 14<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14<br>10                                                                                |
| Other Organisms              | TOTAL                                                                                               | 228                                                            | 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                                                                                     |
|                              |                                                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                                                     |
|                              | IDAHO SMI BASINS SCORE<br>IDAHO SMI BASINS RATING                                                   | 94.64<br>Very Good<br>*Sample 1 did not                        | 99.84<br>Very Good<br>*Sample 2 did not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97.12<br>Very Good                                                                      |
|                              |                                                                                                     | reach the 500 count<br>minimum for the SMI<br>calculation      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |

FORMATION CAPITAL CORPORATION, U.S.
IDAHO COBALT PROJECT
NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

## **APPENDIX F**

WOLMAN PEBBLE COUNT

9217537565

Wolman Pebble Count

| Crehetuata Data                    |                | Diffla 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 1          |          |                | Riffle 2   | 2    |               |                | Ri       | Riffle 3            |                       |
|------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------------|------------|------|---------------|----------------|----------|---------------------|-----------------------|
| Duositate Data                     | Outside Wetted | Wetted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Within       | Wetted   | Outside Wetted | Wetted     |      | Within Wetted | Outside Wetted |          | Within Wetted       | Wetted                |
| Silt/Clay 0-1 mm                   | \$<br>9 *      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * *          | M 0      | 6 E            |            | o c  | 00            | A23            | 0<br>(4) | 17,5                | 0                     |
| Sand 1.1-2.5 mm                    | 6              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>6       | (2)      | for            | <b>%</b>   | es e | Employee      | **             | 0 5      | 4 m                 | 0                     |
| Sub Total                          | <b>V</b>       | Charles State of the State of t | 6,000 - 2000 | <b>)</b> | 9              | , series . | ()   | 60            |                | 0        | on any and a second | Y                     |
| Very Fine Pebble<br>2.51 - 6 mm    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |            |      |               |                |          |                     |                       |
| Pebble 615 mm                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |            |      |               |                |          | 9 °                 |                       |
| Coarse Pebble<br>15.1 - 31 mm      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            |          |                |            | N    | (A)           |                |          | N                   | and the second second |
| Very Coarse Pebble<br>31.1 - 64 mm |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |            |      |               |                |          | Z.                  | ^-7<br>               |
| Small Cobble<br>64.1 - 128 mm      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 4 4        | <u></u>  |                |            | N    | ( )<br>( )    |                |          | 的效                  | 0                     |
| Large Cobble<br>128.1 - 256 mm     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0            |          |                |            | 570  |               |                |          | +                   |                       |
| Small Boulder<br>256.1 - 512 mm    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |            |      |               |                |          |                     |                       |
| Medium Boulder<br>512.1 - 1024 mm  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |            |      |               |                |          |                     |                       |
| Large Boulder<br>1024 mm & Larger  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |            |      |               |                |          |                     |                       |
| TOTAL                              |                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          |                |            |      |               |                |          | The same            |                       |
|                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                |            |      |               |                |          |                     |                       |

2008 Burp

Page 4 of 8

80 00 00

SITE ID: 2 0

FORMATION CAPITAL CORPORATION, U.S.
IDAHO COBALT PROJECT
NPDES FISH TISSUE & MACROINVERTEBRATE SUMMARY REPORT

## APPENDIX G

FISH TISSUE / METAL RESULTS

TABLE 4 Big Deer Creek -01
Metals Dry Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012

| ounty, Idaho<br>Lab ID         | K1209055-031 | K1209055-031D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K1209055-033 | K1209055-035                       | K1209055-037    | K1209055-039   | K1209055-041 | K1209055-043 | K1209055-045 | K1209055-047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K1209055-049     |          |
|--------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|-----------------|----------------|--------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|
| Hildebrand Sample ID           | BDC-01-01    | BDC-01-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDC-01-02    | BDC-01-03                          | BDC-01-04       | BDC-01-05      | BDC-01-06    | BDC-01-07    | BDC-01-08    | BDC-01-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDC-01-10        | Notes    |
| Sample Date                    | 9/4/2012     | 9/4/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9/4/2012     | 9/4/2012                           | 9/4/2012        | 9/4/2012       | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9/4/2012         |          |
| Sample Time                    | 10:24        | 10:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10:26        | 10:28                              | 10:29           | 10:30          | 10:32        | 10:34        | 10:35        | 10:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10:39            |          |
| RACE METALS - EPA METHOD 200.8 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                    |                 |                |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |
| Units 1                        | mg/Kg        | тд/Кд                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg<br>2.40                      | mg/Kg           | mg/Kg          | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg            |          |
| Aluminum, Total                | 8.50         | 7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8 J        |                                    | 12.00           | 2.0 J          | 1.1 J        | 2.30         | 3.90         | 2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4 J            |          |
| Arsenic, Total                 | 0.88         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.43 J       | 0.29 J                             | 0.44 J          | 0.15 J         | 1.07         | 0.23 J       | 0.60         | 0.45 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.55             |          |
| Cadmium, Total                 | 0.010 J      | 0.012 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.015 J      | 0.017 J                            | 0.021           | 0.007 J        | 0.011 J      | 0.027        | 0.053        | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019 J          |          |
| Cobalt, Total                  | 1.310        | 1.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.84         | 0.7360                             | 0.414           | 0.645          | 0.454        | 1.040        | 0.557        | 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.070            |          |
| Lead. Total                    | 0.0036 J     | 0.0043 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0024 J     | 0.0046 J                           | 0.0060 J        | 0.0040 J       | 0.0033 J     | 0.0045 J     | 0.0214       | 0.0166 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0057 J         |          |
| Manganese, Total               | 1.04         | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96         | 1,6300                             | 0.85            | 0.79           | 0.61         | 1.45         | 0.7600       | 0,7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88             |          |
| Nickel, Total                  | 0.08 J       | 0.10 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02 J       | 0.02 U                             | 0.08 J          | 0.02 J         | 0.02 U       | 0.26         | 0.02 U       | 0.02 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02 U           |          |
| Thallium, Total                | 0.0167 J     | 0.0185 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0160 J     | 0.0230                             | 0.0140 J        | 0.0267         | 0.0088 J     | 0.0199       | 0.0153 J     | 0.0268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0044 J<br>32.0 |          |
| Zinc, Total                    | 28.90        | 28.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.9         | 28.4                               | 26.0            | 20.1           | 21.5         | 31.8         | 37.5         | 30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.0             |          |
| EPA METHOD 1631E               |              | A STATE OF THE STA |              | THE RESERVE OF THE PERSON NAMED IN |                 |                |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |          |
| Units <sup>2</sup>             | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg                              | mg/Kg           | mg/Kg          | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg            |          |
| Mercury, Total                 | 0.148        | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.238        | 0.165                              | 0.300           | 0.133          | 0.170        | 0.184        | 0.240        | 0.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0774           | ALCOHOL: |
| EPA METHOD 7742                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                    | 38600 1 1 1 1 3 | Marian Company |              |              |              | and the state of t |                  |          |
| Units                          | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg                              | mg/Kg           | mg/Kg          | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg            |          |
| Selenium, Total                | 1.28 °       | 1.74 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92 *       | 1.86 *                             | 1.36 *          | 2.02 *         | 2.05 *       | 2.08 *       | 1.91 *       | 1.66 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.63 *           |          |

- Metals results reported in milligram per kilogram
- Metals results reported in nanogram per gram
- Metals results reported in milligram per kilogram
- Total solids results reported in percent
- The result is an estimated value.

  The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL identification
- 1D

- Analyte present below calibration ratio
  The result is an outlier. See case narrative
  See mercury matrix spike/duplicate matrix spike summaries, pages 32-40

TABLE 5 Big Deer Creek - 01 Metals Wet Weight Basis
Formation Capitat Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012
Lemhi, County, Idaho

| Lab ID                          | K1209055-031   | K1209055-031D | K1209055-033 | K1209055-035 | K1209055-037 | K1209055-039 | K1209055-041 | K1209055-043 | K1209055-045 | K1209055-047 | K1209055-049 |                                         |
|---------------------------------|----------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------------------------|
| Hildebrand Sample ID            | BDC-01-01      | BDC-01-01     | BDC-01-02    | BDC-01-03    | BDC-01-04    | BDC-01-05    | BDC-01-06    | BDC-01-07    | BDC-01-08    | BDC-01-09    | BDC-01-10    | Notes                                   |
| Sample Date                     | 9/4/2012       | 9/4/2012      | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Sample Time                     | 10:24          | 10:24         | 10:26        | 10:28        | 10:29        | 10:30        | 10:32        | 10:34        | 10:35        | 10:37        | 10:39        |                                         |
| TRACE METALS - EPA METHOD 200.8 | ENDERSON TRIPS |               |              |              |              |              |              |              |              | <u> </u>     |              |                                         |
| Units                           | mg/Kg          | mg/Kg         | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |                                         |
| Aluminum, Total                 | 1.95           | N/A           | 0.19 J       | 0.54         | 2.50         | 0.45 J       | 0.23 J       | 0.54         | 0.75         | 0.49         | 0.32 J       |                                         |
| Arsenic, Total                  | 0.20           | N/A           | 0.096 J      | 0.067 J      | 0.092 J      | 0.035 J      | 0.234        | 0.053 J      | 0.114        | 0.103 J      | 0.124        |                                         |
| Cadmlum, Total                  | 0.0022 J       | N/A           | 0.0034 J     | 0.0038 J     | 0.0044       | 0.0016 J     | 0.0023 J     | 0.0062       | 0.0101       | 0.0052       | 0.0043 J     |                                         |
| Cobalt, Total                   | 0.302          | N/A           | 0.19         | 0.168        | 0.0861       | 0.146        | 0.0995       | 0.24         | 0.106        | 0.205        | 0.240        |                                         |
| Lead, Total                     | 0.0008 J       | N/A           | 0.0005 J     | 0.0011 J     | 0.0013 J     | 0.0009 J     | 0.0007 J     | 0.0010 J     | 0.0041       | 0.0038 J     | 0.0013 J     |                                         |
| Manganese, Total                | 0.24           | N/A           | 0.216        | 0.372        | 0.177        | 0.178        | 0.133        | 0.333        | 0.145        | 0.160        | 0.198        |                                         |
| Nickel, Total                   | 0.019 J        | N/A           | 0.005        | 0,004 U      | 0.016 J      | 0.005 J      | 0.004 U      | 0.060        | 0.004 U      | 0.005 J      | 0.004 U      |                                         |
| Thallium, Total                 | 0,0038 J       | N/A           | 0.0036       | 0.0048       | 0.0029 J     | 0.0061       | 0.0019 J     | 0.0046       | 0.0029       | 0.0061       | 0.0010J      |                                         |
| Zinc, Total                     | 6.65           | N/A           | 5.64         | 6.48         | 5.42         | 4.57         | 4.7          | 7.31         | 7.14         | 7.1          | 7.21         |                                         |
| EPA METHOD 1631E                |                |               |              |              |              |              |              |              |              |              |              |                                         |
| Units                           | mg/Kg          | mg/Kg         | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |                                         |
| Mercury, Total                  | 0.0340         | **            | 0,0538       | 0.0376       | 0.0624       | 0.0302       | 0.0372       | 0.0423       | 0.0458       | 0.0458       | 0.0174       |                                         |
| EPA METHOD 7742                 |                |               |              |              |              |              |              |              |              |              |              |                                         |
| Units <sup>2</sup>              | mg/Kg          | mg/Kg         | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |                                         |
| Selenium, Total                 | 0.29           | N/A           | 0.21 *       | 0.42 °       | 0.28 *       | 0.46 *       | 0.45 *       | 0.48 *       | 0.36 *       | 0.38 *       | 0.14 *       |                                         |
| FREEZE DRY                      |                |               |              |              |              |              |              |              |              |              |              |                                         |
| Units*                          | %              | %             | %            | %            | %            | %            | %            | %            | %            | %            | %            |                                         |
| Total Solids*                   | 23             | 23.1          | 22.6         | 22.8         | 20.8         | 22.7         | 21.9         | 23           | 19.1         | 22.8         | 22.5         |                                         |

- Metals results reported in milligram per kilogram
- Metals results reported in nanogram per gram
- Metals results reported in milligram per kilogram
- Total solids results reported in percent
- Total solids are only expressed on a wet weight basis
- The result is an estimated value.
- The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL identification
- Analyte present below calibration ratio N/A %
- Percent
- The result is an outlier. See case narrative
- See mercury matrix spike/duplicate matrix spike summaries, pages 32-40

TABLE 6
Big Deer Creek - 02
Metals Dry Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012

| embi. | County. | Idaho |  |
|-------|---------|-------|--|

| County, Idaho  Lab ID          | K1209055-051    | K1209055-053 | K1209055-055 | K1209055-057 | K1209055-059 | K1209055-061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K1209055-063 | K1209055-065 | K1209055-067 | K1209055-069 |       |
|--------------------------------|-----------------|--------------|--------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|-------|
| Hildebrand Sample ID           | BDC-02-01       | BDC-02-02    | BDC-02-03    | BDC-02-04    | BDC-02-05    | BDC-02-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDC-02-07    | BDC-02-08    | BDC-02-09    | BDC-02-10    | Notes |
| Sample Date                    | 9/4/2012        | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012     |       |
| Sample Time                    | 12:39           | 12:41        | 12:43        | 12:45        | 12:46        | 12:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12:50        | 12:51        | 12:52        | 12:54        |       |
| Outsiple 18800                 |                 |              |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |              |       |
| RACE METALS - EPA METHOD 200.8 | BEST BANKS NAME |              |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |              |       |
| Units'                         | mg/Kg           | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |       |
| Aluminum, Total                | 4.20            | 1.0 J        | 1.0 J        | 1.1 J        | 1.5 J        | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7 J        | 1.2 J        | 1.3 J        | 1.0 J        |       |
| Arsenic, Total                 | 0.40 J          | 1.05         | 0.15 J       | 0.49 J       | 0.63         | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24         | 0.34 J       | 0.85         | 0.76         |       |
| Cadmium, Total                 | 0.058           | 0.026        | 0.027        | 0.030        | 0.031        | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.068        | 0.062        | 0.026        | 0.061        |       |
| Cobalt, Total                  | 0.116           | 0.035        | 0.061        | 0.080        | 0.156        | 0.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.081        | 0.068        | 0.037        | 0.086        |       |
| Lead, Total                    | 0.0111 J        | 0.0015 J     | 0.0008 J     | 0.0161 J     | 0.0012 J     | 0.0475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0028 J     | 0,0015 J     | 0.0087 J     | 0.0104 J     |       |
| Manganese, Total               | 0.95            | 0.62         | 0.72         | 0.67         | 0.73         | 3.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.01         | 0.7100       | 0.6600       | 0.79         |       |
| Nickel, Total                  | 0.02 U          | 0 03 J       | 0.02 U       | 0.1500       | 0.02 U       | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02 U       | 0.02 U       | 0.04 J       | 0.04 J       |       |
| Thailium, Total                | 0.0133 J        | 0.0150 J     | 0.0151 J     | 0.0207       | 0.0118 J     | 0.0183 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0163 J     | 0.0144 J     | 0.0142 J     | 0.0175 J     |       |
| Zinc, Total                    | 34.4            | 25.9         | 25.4         | 21.7         | 36.8         | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.2         | 41.2         | 25.8         | 27.6         |       |
| EPA METHOD 1631E               |                 |              |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |              |              |       |
| Units                          | mg/Kg           | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |       |
| Mercury, Total                 | 0.498           | 0.437        | 0.378        | 0.271        | 0.168        | 0.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.231        | 0.298        | 0.219        | 0.226        |       |
| EPA METHOD 7742                |                 |              |              |              |              | The state of the s |              |              |              |              |       |
| Units'                         | mg/Kg           | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |       |
|                                | 1,50 °          | 2.58 *       | 1.83°        | 1.51 °       | 1.99 °       | 1.73 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29*        | 1.52 *       | 1.08 *,      | 2.66 *       |       |
| Selenium, Total                | 1,50 *          | 2.58 *       | 1.83*        | 1.51 *       | 1.99 °       | 1.73 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29*        | 1.52         | 1.08         | 2.00         |       |

S

- Metals results reported in milligram per kilogram Metals results reported in nanogram per gram
- Metals results reported in milligram per kilogram
- Total solids results reported in percent
  The result is an estimated value.
  The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL identification
- ID \* The result is an outlier. See case narrative

TABLE 7
Big Deer Creek - 02
Metals Wet Weight Basis Idaho Cobalt Project & Lemhi, County, Idaho

| rmation Capital Corporation                            |  |  |
|--------------------------------------------------------|--|--|
| sho Cobalt Project Monitoring Summary, Sentember, 2012 |  |  |

| Lab ID                         | K1209055-051 | K1209055-053 | K1209055-055        | K1209055-057 | K1209055-059 | K1209055-061 | K1209055-063            | K1209055-065 | K1209055-067 | K1209055-069 |                  |
|--------------------------------|--------------|--------------|---------------------|--------------|--------------|--------------|-------------------------|--------------|--------------|--------------|------------------|
| Hildebrand Sample ID           | BDC-02-01    | BDC-02-02    | BDC-02-03           | BDC-02-04    | BDC-02-05    | BDC-02-06    | BDC-02-07               | BDC-02-08    | BDC-02-09    | BDC-02-10    | Notes            |
| Sample Date                    | 9/4/2012     | 9/4/2012     | 9/4/2012            | 9/4/2012     | 9/4/2012     | 9/4/2012     | 9/4/2012                | 9/4/2012     | 9/4/2012     | 9/4/2012     | Hotes            |
| Sample Time                    | 12:39        | 12:41        | 12:43               | 12:45        | 12:46        | 12:48        | 12:50                   | 12:51        | 12:52        | 12:54        |                  |
| RACE METALS - EPA METHOD 200.8 |              |              | Chicagons - Harasin |              |              |              | nja sistanjanjanjan ija |              |              |              |                  |
| Units                          | mg/Kg        | mg/Kg        | mg/Kg               | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                   | mg/Kg        | mg/Kg        | mg/Kg        |                  |
| Aluminum, Total                | 0,87         | 0.21 J       | 0.23 J              | 0.24 J       | . 0.31 J     | 28.4         | 0.38 J                  | 0.24 J       | 0.27 J       | 0.22 J       |                  |
| Arsenic, Total                 | 0.82 J       | 0.223        | 0.035 J             | 0.108 J      | 0.132        | 0.124        | 0.272                   | 0.071 J      | 0.186        | 0.163        |                  |
| Cadmium, Total                 | 0.0120       | 0.0056       | 0.0063              | 0.0067       | 0.0066       | 0.0102       | 0.0149                  | 0.0128       | 0.0057       | 0.0131       |                  |
| Cobalt, Total                  | 0.0239       | 0.0074       | 0.0140              | 0.0177       | 0.0325       | 0,108        | 0.0179                  | 0.0141       | 0.0080       | 0.0186       |                  |
| Lead, Total                    | 0.0023 J     | 0.0003 J     | 0.0002 J            | 0.0036 J     | 0.0003 J     | 0.0095       | 0.0006 J                | 0.0003 J     | 0.0019 J     | 0.0022 J     |                  |
| Manganese, Total               | 0.195        | 0.131        | 0.166               | 0.149        | 0.153        | 0.702        | 0.222                   | 0.147        | 0.144        | 0.171        |                  |
| Nickel, Total                  | 0.004 U      | 0.006 J      | 0.004 U             | 0.032 J      | 0.004 U      | 0.073        | 0.004 U                 | 0.004 U      | L 600'0      | 0.008 J      |                  |
| Thallium, Total                | 0.0027 J     | 0.0032 J     | 0.0035 J            | 0.0046       | 0.0025 J     | 0.0037       | 0.0036 J                | 0.0030 J     | 0.0031 J     | 0.0038 J     |                  |
| Zinc, Total                    | 7.08         | 5.52         | 5,85                | 4.64         | 7.70         | 4.71         | 5,98                    | 8.54         | 5.63         | 5.96         |                  |
| EPA METHOD 1631E               |              |              | A STATE OF STATE    |              |              |              |                         |              |              |              |                  |
| Units                          | mg/Kg        | mg/Kg        | mg/Kg               | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                   | mg/Kg        | mg/Kg        | mg/Kg        |                  |
| Mercury, Total                 | 0.103        | 0.0931       | 0.0869              | 0.0604       | 0.0347       | 0.0491       | 0.0508                  | 0.0617       | 0.0477       | 0.0488       |                  |
| EPA METHOD 7742                |              |              |                     |              |              |              |                         |              |              |              | Service Contract |
| Units'                         | mg/Kg        | mg/Kg        | mg/Kg               | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                   | mg/Kg        | mg/Kg        | mg/Kg        |                  |
| Selenium, Total                | 0.31 *       | 0.55 *       | 0.42*               | 0.34 *       | 0.42 *       | 0.35 *       | 0.72 *                  | 0.32 *       | 0.24 *       | 0.57 *       |                  |
| FREEZE DRY                     | 11 10 10 10  |              |                     |              |              |              |                         |              |              |              |                  |
| Units*                         | %            | %            | %                   | %            | %            | %            | %                       | %            | %            | %            |                  |
| Total Solids                   | 20.6         | 21.3         | 23                  | 22.3         | 20.9         | 20.2         | 22                      | 20.7         | 21.8         | 21.6         |                  |

- Metals results reported in milligram per kilogram
- Metals results reported in minigram per Miogram

  Metals results reported in milligram per kilogram

  Total solids results reported in percent
- Total solids are only expressed on a wet weight basis
- J The result is an estimated value.
  U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL ID Identification
- U 1D %
- Percent
  The result is an outlier. See case parrative

TABLE 8
Upper Blackbird Creek - 01
Metals Dry Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012
Lemhi, County, Idaho

| , County, IdahoLab ID          | K1209055-071                | K1209055-071D             | K1209055-073 | K1209055-075 | K1209055-077 | K1209055-079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K1209055-081 | K1209055-081D | K1209055-083 | K1209055-085 | K1209055-087 | K1209055-089 |                                  |
|--------------------------------|-----------------------------|---------------------------|--------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------|--------------|--------------|--------------|----------------------------------|
| Hildebrand Samole ID           | UBC-01                      | UBC-01                    | UBC-02       | UBC-03       | UBC-04       | UBC-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UBC-06       | UBC-06        | UBC-07       | UBC-08       | UBC-09       | UBC-10       | Notes                            |
| Sample Date                    | 9/5/2012                    | 9/5/2012                  | 9/5/2012     | 9/5/2012     | 9/5/2012     | 9/5/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9/5/2012     | 9/5/2012      | 9/5/2012     | 9/5/2012     | 9/5/2012     | 9/5/2012     |                                  |
| Sample Time                    | 10:24                       | 10:24                     | 10:26        | 10:28        | 10:29        | 10:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10:32        | 10:32         | 10:34        | 10:35        | 10:37        | 10:39        |                                  |
| RACE METALS - EPA METHOD 200.8 | 9-10-11                     |                           |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |              |              |              |              |                                  |
| Units'                         | mg/Kg                       | mg/Kg                     | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg         | mg/Kg        | mg/Kg        | mg/Kg        | រាជ្ជ/Kg     |                                  |
| Aluminum, Total                | 5.00                        | 6.60                      | 41.90        | 2.90         | 1.0 J        | 1.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1          | N/A           | 0.5 J        | 2.00         | 0.6 J        | 2.10         | Chain of custody has sample I    |
| Arsenic, Total                 | 0.85                        | 0.86                      | 0.97         | 0.32 J       | 1.26         | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14 J       | N/A           | 0.68         | 0.63         | 0.54         | 0.26 J       | for Upper Black Bird Creek as    |
| Cadmium, Total                 | 0.015 J                     | 0.016 J                   | 0.011 J      | 0.019 J      | 0.018 J      | 0.011 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.015 J      | N/A           | 0.010 J      | 0.037        | 0.011 J      | 0.029        | UBC, however, laboratory reporte |
| Cobalt, Total                  | 1,430                       | 1,455                     | 0.908        | 0.565        | 1.92         | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.202        | N/A           | 0.955        | 0.951        | 0.635        | 0.491        | as MBC                           |
| Lead, Total                    | N/A                         | N/A                       | 0.0057 J     | 0.0036 J     | 0.0014 J     | 0.0017 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0025 J     | 0.0641        | 0.0041 J     | 0.0016 J     | 0.0011 J     | 0.0016 J     |                                  |
| Manganese, Total               | 4.51                        | 4.59                      | 13.90        | 2.47         | 18.10        | 5.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.64         | N/A           | 5.98         | 6.25         | 3.09         | 1,08         |                                  |
| Nickel, Total                  | 0.13 J                      | 0.13 J                    | 0.11 J       | 0.03 J       | 0.08 J       | 0.04 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03 J       | N/A           | 0.03 J       | 0.03 J       | 0.02 J       | 0.03 J       |                                  |
| Thallium, Total                | 0.0097 J                    | 0.01183                   | 0.0019 J     | 0.0025 J     | 0.0077 J     | 0.0064 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0040 J     | N/A           | 0.0088       | 0.0060 J     | 0.0027 J     | 0.0064 J     |                                  |
| Zinc, Total                    | 58.42°                      | 77,10 *                   | 24.8 °       | 35.5 °       | 34.5 *       | 30.3 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.1 *       | N/A           | 42.9 *       | 43.1 *       | 44.1 °       | 40.0 *       |                                  |
| EPA METHOD 1631E               |                             |                           |              |              |              | A STATE OF THE STA |              |               |              |              |              |              |                                  |
| Units <sup>2</sup>             | mo/Ka                       | mg/Kg                     | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg         | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |                                  |
| Mercury, Total                 | . 0.618                     | **                        | 0.211        | 0.242        | 0.181        | 0.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.180        | **            | 0.154        | 0.326        | 0.220        | 0.294        |                                  |
| EPA METHOD 7742                |                             | Environment of the second |              |              |              | THE RESERVE TO SERVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |               |              |              |              |              |                                  |
| Units*                         | mg/Kg                       | mg/Kg                     | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg        | mg/Kg         | mg/Kg        | mg/Kg        | mg/Kg        | т9/Кр        |                                  |
| Selenium, Total                | 1.40                        | 0.98                      | 0.51         | 1.04         | 1.32         | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20         | N/A           | 1.93         | 1.40         | 1 85         | 1.86         |                                  |
|                                | ELCS COLUMN TO BE SELECTED. | CHALL CONTRACTOR          |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |              |              |              |              |                                  |

- fotes:

  Metals results reported in milligram per kilogram

  Metals results reported in nanogram per gram

  Metals results reported in milligram per kilogram

  Total solids results reported in percent

  The result is an estimated value.

  ID Identification

  Analyte present below calibration ratio

  N/A Not available

  See mercury matrix spike/duplicate matrix spike summaries, pages 32-40

  The result is an outlier. See case narrative

TABLE 9

TABLE 9
Upper Blackbird Creek - 01
Metals Wet Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012
Lembi, County, Idaho

| County, idaho Lab ID            | K1209055-071      | K1209055-071D | K1209055-073       | K1209055-075 | K1209055-077 | K1209055-079 | K1209055-081 | K1209055-081D          | K1209055-083 | K1209055-085 | K1209055-087 | K1209055-089 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|-------------------|---------------|--------------------|--------------|--------------|--------------|--------------|------------------------|--------------|--------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hildebrand Sample ID            | UBC-01            | UBC-01        | UBC-02             | UBC-03       | UBC-04       | UBC-05       | UBC-06       | UBC-06                 | UBC-07       | UBC-08       | UBC-09       | UBC-10       | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample Date                     | 9/5/2012          | 9/5/2012      | 9/5/2012           | 9/5/2012     | 9/5/2012     | 9/5/2012     | 9/5/2012     | 9/5/2012               | 9/5/2012     | 9/5/2012     | 9/5/2012     | 9/5/2012     | 110103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Time                     | 10:24             | 10:24         | 10:25              | 10:28        | 10:29        | 10:30        | 10:32        | 10:32                  | 10:34        | 10:35        | 10:37        | 10:39        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FRACE METALS - EPA METHOD 200.8 |                   |               |                    |              | Mary and     |              |              |                        |              |              |              | 60.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Units'                          | mg/Kg             | mg/Kg         | mg/Kg              | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                  | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aluminum, Total                 | 0.94              | N/A           | 10.2               | 0.59         | 0.21 J       | 0.23 J       | 0.45         | N/A                    | 0.11 J       | 0.42         | 0.12 J       | 0.43         | Chain of custody has sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Arsenic, Total                  | 0.160             | N/A           | 0.236              | 0.065 J      | 0.267        | 0.130        | 0.030 J      | N/A                    | 0.140        | 0.130        | 0.109        | 0.054 J      | for Upper Black Bird Creek a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cadmium, Total                  | 0.0028 J          | N/A           | 0.0028 J           | 0,0039 J     | 0.0039 J     | 0.0024 J     | 0.0033 J     | N/A                    | 0.0021 J     | 0.0076       | 0.0023 J     | 0.0060       | UBC, however, laboratory report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cobalt, Total                   | 0.271             | N/A           | 0.221              | 0.177        | 0,406        | 0.229        | 0.0430       | N/A                    | 0.197        | 0.197        | 0.129        | 0.100        | as MBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lead. Total                     | 0.0006 J          | N/A           | 0.0014 J           | 0.0007 J     | 0.0003 J     | 0.0004 J     | 0.0005 J     | N/A                    | 0.0008 J     | 0.0003 J     | 0.0002 J     | 0.0003 J     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manganese, Total                | 0.853             | N/A           | 3.380              | 0.511        | 3.830        | 1.200        | 0.137        | N/A                    | 1.230        | 1.290        | 0.628        | 0.221        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nickel, Total                   | 0.025 J           | N/A           | 0.027 J            | 0.007 J      | 0.017 J      | 0.009 J      | 0.006 J      | N/A                    | 0.005 J      | 0.006 J      | 0.004 J      | 0.005 J      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thallium, Total                 | 0.0018 J          | N/A           | 0.0005 J           | 0.0005 J     | 0.0016 J     | 0.0013 J     | 0.0008 J     | N/A                    | 0.0018 J     | 0.0012 J     | 0.0005 J     | 0.0013 J     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zinc, Total                     | 11.0 *            | N/A           | 6.02 °             | 7,35 *       | 7.30 *       | 6.28 *       | 7.26 °       | N/A                    | 8.83 *       | 8.92 *       | 8.96 °       | 8.16 *       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA METHOD 1631E                | Texas ( )         |               |                    |              |              |              | District of  | The Color of the Color |              |              |              |              | THE STATE OF THE S |
| Units*                          | mg/Kg             | mg/Kg         | mg/Kg              | mq/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                  | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mercury, Total                  | 0.117             | **            | 0.0513             | 0.0501       | 0.0384       | 0.0333       | 0.0383       | 69                     | 0.0317       | 0.0675       | Ü.0447       | 0.0600       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EPA METHOD 7742                 | and the positions |               | THE PARTY NAMED IN |              |              |              |              |                        |              |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Units                           | mg/Kg             | mg/Kg         | mg/Kg              | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg                  | mg/Kg        | mg/Kg        | mg/Kg        | mg/Kg        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selenium, Total                 | 0.26              | N/A           | 0.12               | 0.22         | 0 28         | 0.34         | 0.25         | N/A                    | 0.40         | 0.29         | 0.38         | 0.38         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FREEZE DRY                      |                   |               |                    | 4            |              |              |              |                        | y Project of |              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Units                           | %                 | %             | %                  | 1 %          | %            | 1 %          | %            | %                      | %            | %            | 1 %          | %            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Solids*                   | 19                | 19.3          | 24.3               | 20.7         | 21,2         | 20.7         | 21.3         | N/A                    | 20.6         | 20.7         | 20.3         | 20.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- Metals results reported in milligram per tidlogræm Metals results reported in nanogram per क्रका
- Metals results reported in milligram per kilogram
- Total solids results reported in mingratin be actional.

  Total solids are only expressed on a wet weight basis

  The result is an estimated value.

  Identification

- J Identification
  J Analyte present below calibration ratio
  Percent
  N/A Not available
  See mercury matrix spike/duplicate matrix spike summaries, pages 32-40
  The result is an outlier. See case narrative

TABLE 10
Method Blanks Dry Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012
Lemhi, County, Idaho

| Lab ID                          | K1209055-MB1 | K1209055-MB2 |                      |
|---------------------------------|--------------|--------------|----------------------|
| Hildebrand Sample ID            | N/A          | N/A          | Notes                |
| Sample Date                     | 10/8/2012    | 10/8/2012    |                      |
| TRACE METALS - EPA METHOD 200.8 |              | 0.50         |                      |
| Units'                          | mg/Kg        | mg/Kg        | E4                   |
| Aluminum, Total                 | 0.2 U        | 0.4 J        |                      |
| Arsenic, Total                  | 0.02 U       | 0.02 U       |                      |
| Cadmium, Total                  | 0.002 U      | 0.002 U      | - 1                  |
| Cobalt, Total                   | 0.003 U      | 0.003 U      | 41                   |
| Lead, Total                     | 0.0009 J     | 0.0015 J     | Analyzed on 10/15/12 |
| Manganese, Total                | 0.02 U       | 0.02 U       | P                    |
| Nickel, Total                   | 0.02 U       | 0.02 U       |                      |
| Thallium, Total                 | 0.0027 J     | 0.0009 U     |                      |
| Zinc, Total                     | 0.08 J       | 0.38 J *     |                      |
| EPA METHOD 7742                 |              |              |                      |
| Units                           | mg/Kg        | mg/Kg        |                      |
| Selenium, Total                 | 0.05 * U     | 0.05 U       | Analyzed on 10/10/12 |

- Metals results reported in milligram per kilogram
- J The result is an estimated value.
- ID Identification

  \* The result is a
- \* The result is an outlier. See case narrative.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

TABLE 11
Method Blanks Wet Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012
Lemhi, County, Idaho

| Lab ID                          | K1209055-MB1 | K1209055-MB2 |                      |
|---------------------------------|--------------|--------------|----------------------|
| Hildebrand Sample ID            | N/A          | N/A          | Notes                |
| Sample Date                     | 10/8/2012    | 10/8/2012    |                      |
|                                 |              |              |                      |
| TRACE METALS - EPA METHOD 200.8 |              |              |                      |
| Units'                          | mg/Kg        | mg/Kg        |                      |
| Aluminum, Total                 | 0.04 U       | 0.08 J       |                      |
| Arsenic, Total                  | 0.004 U      | 0.004 U      |                      |
| Cadmium, Total                  | 0.0004 U     | 0.0004 U     |                      |
| Cobalt, Total                   | 0.0006 U     | 0.0006 U     |                      |
| Lead, Total                     | 0.0002 J     | 0.0003 J     | Analyzed on 10/15/12 |
| Manganese, Total                | 0.004 U      | 0.004 U      |                      |
| Nickel, Total                   | 0.004 U      | 0.004 U      |                      |
| Thallium, Total                 | 0.0005 J     | 0.0002 U     |                      |
| Zinc, Total                     | 0.02 J       | 0.38 J *     |                      |
| EPA METHOD 7742                 |              |              |                      |
| Units'                          | mg/Kg        | mg/Kg        |                      |
| Selenium, Total                 | 0.01 * U     | 0.01 U       | Analyzed on 10/10/12 |

- Metals results reported in milligram per kilogram
- J The result is an estimated value.
- ID Identification
- \* The result is an outlier. See case narrative.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

TABLE 12
Mercury Method Blanks Dry Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012
Lemhi, County, Idaho

| Lab ID<br>Hildebrand Sample ID | K1209055-MB1<br>N/A | K1209055-MB2<br>N/A | K1209055-MB3<br>N/A | Notes |
|--------------------------------|---------------------|---------------------|---------------------|-------|
| Sample Date                    | 10/19/2012          | 10/19/2012          | 10/19/2012          |       |
| EPA METHOD 1631E               |                     |                     |                     |       |
|                                |                     |                     |                     |       |
| Units                          | mg/Kg               | mg/Kg               | mg/Kg               |       |
| Mercury, Total                 | ND                  | ND.                 | ND ND               |       |

- Metals results reported in nanogram per gram
- J The result is an estimated value.
- ID Identification
- \* The result is an outlier. See case narrative.
- ND Not Detected

TABLE 13
Mercury Method Blanks Wet Weight Basis
Formation Capital Corporation
Idaho Cobalt Project Monitoring Summary, September, 2012
Lemhl, County, Idaho

| Lab ID               | K1209055-MB1      | K1209055-MB2 | K1209055-MB3 |       |
|----------------------|-------------------|--------------|--------------|-------|
| Hildebrand Sample ID | N/A               | N/A          | N/A          | Notes |
| Sample Date          | 10/19/2012        | 10/19/2012   | 10/19/2012   |       |
| EPA METHOD 1631E     |                   |              |              |       |
|                      | Sandal Control of |              |              |       |
| Units'               | mg/Kg             | mg/Kg        | mg/Kg        |       |
| Mercury, Total       | ND ND             | ND           | ND           |       |

Metals results reported in nanogram per gram
J The result is an estimated value.
ID identification
The result is an outlier. See case narrative.
ND Not Detected